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Abstract
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1 Introduction

The recent �nancial crisis resulted in the collapse of large �nancial institutions, the bailout of

banks by national governments, and downturns in stock markets around the world. In addition,

it contributed to persistent high unemployment, failures of key businesses, declines in consumer

wealth, real investment, and output. The �nancial crisis was caused by a complex interplay of

valuation and liquidity problems in the United States banking system in 2007. The bursting

of the U.S. housing bubble, which peaked in 2007, caused the values of securities tied to U.S.

real estate pricing to plummet, damaging �nancial institutions globally. Concerns about bank

solvency, declines in credit availability, and damaged investor con�dence caused the global

stock markets to fall. Declines in bank lending reduced real investment and output, causing

the Great Recession.

The recent �nancial crisis provides a challenge to macroeconomists. Traditional macroeco-

nomic models typically assume perfect �nancial markets and ignore �nancial frictions. These

models are not useful for understanding �nancial crisis. Bernanke and Gertler (1989), Carl-

strom and Fuerst (1997), Kiyotaki and Moore (1997), and Bernanke, Gertler and Gilchrist

(1999) introduce �nancial frictions into business cycle models. These models assume that �-

nancial frictions appear only in non-�nancial �rms and treat �nancial intermediaries as a veil.

These models cannot capture the fact that the current �nancial crisis featured a signi�cant

disruption of �nancial intermediation.

In this paper, we develop a macroeconomic model with a banking sector in which changes

in household con�dence can cause a �nancial crisis. To focus on the impact of household

con�dence, we assume that there is no uncertainty about economic fundamentals. The key idea

of the model is to introduce �nancial frictions into the banking sector in the form of endogenous

borrowing constraint similar to those in Albuquerque and Hopenhayn (2004), Alvarez and

Jermann (2000), Jermann and Quadrini (2011), and Miao and Wang (2011a,b,c). In our model,

households put deposits in a bank and deposits become liabilities of the bank. The bank has

limited commitment and may default on deposit liabilities. If the bank chooses to default,

then depositors can seize a fraction of bank capital. Instead of liquidating seized bank capital,

depositors reorganize the bank and keep it running. The bank and depositors renegotiate

deposit repayments. The threat value to depositors is the stock market value of the bank with

seized bank capital. Suppose that the bank has a full bargaining power. Then deposits cannot

exceed the threat value to depositors or the stock market value of the reorganized bank. This
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constraint is incentive compatible for both depositors and the bank. It also ensures that there

is no default in an optimal contract.

We show that a banking bubble can exist given the endogenous borrowing constraint. The

intuition is based on the following positive feedback loop mechanism: If both depositors and

the bank have optimistic beliefs about the bank value, then the bank wants to take more

deposits and households are willing to put more deposits in the bank, in the hope that deposit

repayments can be backed by a high bank value. The bank then uses the increased deposits

to make more lending to non-�nancial �rms. Consequently, the bank can make more pro�ts,

which makes the bank value indeed high, justifying the initial optimistic beliefs. We call this

equilibrium bubbly equilibrium.

Of course, there is another equilibrium, called bubbleless equilibrium, in which no one

believes in bubbles. Then households place less deposits in the bank because they are concerned

that their deposits cannot be repaid in the future. In this case, banks make less lending to

non-�nancial �rms, resulting in lower capital stock and lower output.

As in Blanchard and Watson (1982), Weil (1987), Kocherlakota (2009), and Miao and Wang

(2011a), we construct a third type of equilibrium in which households believe that banking

bubbles may burst in the future with some probability. We show that even though there is no

shock to the fundamentals of the economy, changes in con�dence trigger a �nancial crisis. We

show that immediately following the collapse of the banking bubble, deposits shrink, lending

falls, and credit spreads rise, causing real investment and output to fall.

During the recent �nancial crisis, the Federal Reserve conducted three general types of

credit policy. The �rst is discount window lending. The Fed used the discount window to lend

funds to commercial banks that in turn lent them out to non-�nancial borrowers. The second is

direct lending. The Fed lent directly in high grade credit markets, funding assets that included

commercial paper, agency debt and mortgage backed securities. The third is equity injections.

The Treasury coordinated with the Fed to acquire ownership positions in commercial banks by

injecting equity.

To assess the impact of credit policy, we introduce a central bank in our model. we allow

the central bank to act as intermediary by borrowing funds from savers and then lending them

to investors. Unlike private intermediaries, the central bank does not face constraints on its

leverage ratio. There is no enforcement problem between the central bank and its creditors

because it can commit to always honoring its debt. For simplicity, we assume that the central

bank�s direct lending is �nanced by raising lump-sum taxes. On the other hand, the central
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bank is less e¢ cient in intermediating funds than commercial banks. Following Gertler and

Karadi (2011) and Gertler and Kiyotaki (2010), we model this ine¢ ciency as a deadweight loss

of output. We also follow their studies and assume that the size of direct lending responds

to credit spreads according to a feedback rule. In our model, credit spreads rise sharply at

the onset of a crisis. The central bank then injects credit in response to movements in credit

spreads, according to the feedback rule. We show that this credit policy can mitigate economic

downturns. The net e¤ect on welfare trades o¤ between this bene�t and e¢ ciency costs.

We also use our model to study the role of capital requirements. Bank capital requirements

ensure that banks are not participating or holding investments that increase the risk of default

and that they have enough capital to sustain operating losses while still honoring deposit

withdrawals. In our model, there is no uncertainty about fundaments and hence there is no

issue of risk-taking behavior. However, bank capital requirements can still help stabilize the

banking system. We show that these requirements can help prevent the formation of a banking

bubble. The intuition is that capital requirements limit leverage. When these requirements are

su¢ ciently restrictive, banks cannot borrow excessively from households and hence the positive

feedback loop discussed earlier cannot be initiated. Limiting leverage, however, comes at a cost

because it will reduce lending to non-�nancial �rms. As a result, it will reduce investment and

output.

Our paper is related to three strands of literature. First, it is related to the recent literature

that incorporates a �nancial sector into macroeconomic models (e.g., Gertler and Karadi (2011),

Gertler and Kiyotaki (2010), and Gertler, Kiyotaki, and Queralto (2011), and Brunnermeier and

Sannikov (2011)). For the �nancial sector to play an important role, one needs to introduce

various frictions explicitly in the �nancial sector so that the Modigliani and Miller theorem

does not hold. Frictions are typically modeled in the form of borrowing constraints. Borrowing

constraints can be micro-founded by agency issues or moral hazard problems. Our paper di¤ers

from this literature in two respects. First, there is no uncertainty about economic fundamentals

in our model. Unlike the studies cited earlier, which assumes that �nancial crisis is triggered by

some exogenous shocks (e.g., capital quality shocks), we show that �nancial crisis is triggered

by changes in agents� beliefs about the stock market value of banks. Second, we introduce

borrowing constraints from an optimal contracting problem with limited commitment, rather

than from agency issues or moral hazard problems. This contracting problem is tractable to

analyze in our deterministic setup.
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Our model is also related to the literature on rational bubbles.1 It is well known that it is

nontrivial to generate rational bubbles in in�nite-horizon models (Santos andWoodford (1997)).

Rational bubbles are often studied in overlapping-generations models (e.g., Tirole (1985) and

Martin and Ventura (2011)). Rational bubbles can also be generated in in�nite-horizon mod-

els with borrowing constraints (e.g., Kocherlakota (1992, 2009), Hirano and Yanagawa (2011),

and Wang and Yi (2011)). One limitation of all these models is that they study bubbles on

intrinsically useless assets or on assets with exogenously given payo¤s. Miao and Wang (2011a)

provide a theory of credit-driven stock price bubbles in an in�nite-horizon model with produc-

tion. Stock dividends are endogenously a¤ected by bubbles. Miao and Wang (2011b,c) apply

this theory to study endogenous total factor productivity and endogenous growth, respectively.

The present paper also borrows ideas from Miao and Wang (2011a) in that banking bubbles

in this paper are created by a positive feedback loop mechanism just as in Miao and Wang

(2011a).

Finally, our paper is related to the literature on bank runs (e.g., Diamond and Dybvig

(1983)). A bank run occurs when a large number of bank customers withdraw their deposits

because they believe the bank might fail. To sustain a bank run equilibrium, the following

positive feedback loop mechanism must be at work: As more people withdraw their deposits,

the likelihood of default increases, and this encourages further withdrawals. Panic by people

can cause a sound bank to fail. However, if all people believe that the bank is sound, then no

large withdrawals happen and hence a bank run does not occur. Both types of equilibria are

self-ful�lling. This literature typically considers an essentially static setup (or a three-period

setup) without explicit dynamics. He and Xiong (2011) develop a dynamic model of debt

run and derive a unique equilibrium. Our paper di¤ers from this literature in that our model

features both the �nancial and non-�nancial sectors in a dynamic macroeconomic model. We

focus on the question of how bubbles and crashes in banking stocks a¤ect �nancial crisis and

the real economy.

The remainder of the paper proceeds as follows. Section 2 presents a baseline model. Section

3 provides equilibrium characterizations. Section 4 studies equilibrium with stochastic bubbles.

Section 5 analyzes the role of bank capital requirements. Section 6 studies the impact of credit

policy. Section 7 concludes. An appendix collects all technical proofs.

1See Scheinkman and Xiong (2003) for a model of bubbles based on heterogeneous beliefs. See Shiller (2005)
for a discussion of bubbles based on irrational exuberance. See Brunnermeier (2009) for a survey of various
theories of bubbles.
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2 A Baseline Model

We start with a baseline model with deterministic bubbles. Consider a deterministic economy

consisting of households, non-�nancial �rms and �nancial intermediaries (or simply banks). We

do not consider government or monetary authority for now. Time is continuous and continues

forever.

2.1 Households

Following Gertler and Karadi (2011) and Gertler and Kiyotaki (2010), we formulate the house-

hold sector in a way that maintains the tractability of the representative agent approach. There

is a continuum of identical households of measure unity. Each household consumes, saves and

supplies labor. Normalize labor supply to unity. Households save by lending funds to compet-

itive banks. Within each household, there are two types of members: workers and bankers.

Workers supply labor and return their wages to the household. Each banker manages a bank

and transfers dividends back to the household. The household owns the bank and deposits

funds in banks. (These banks may be owned by other households.) Within the family, there is

perfect consumption insurance.

Households do not hold capital directly, but own all non-�nancial �rms by trading �rm

shares in a stock market. Assume that households lend funds to banks that they do not

own. Each household derives utility from consumption fCtg according to the linear utility,R1
0 e�rtCtdt; where r is the subjective discount rate. Because of linear utility, r is also equal

to the interest rate on riskless bonds. The budget constraint is given by:

dDt = rDtdt� Ctdt+ wtdt+�tdt; (1)

where Dt; wt; and �t represent deposits, the wage rate, and dividends from both �nancial and

non-�nancial �rms, respectively.

2.2 Banks

There is a continuum of banks of measure unity. Banks lend funds obtained from households to

non-�nancial �rms. Banks are identical and there is no liquidity risk and no interbank market.

Thus, we only need to consider a representative bank�s behavior. At each time t; let Nt be

the net worth that a bank has, Dt the deposits raised from households, and St the loans lent

to non-�nancial �rms. Non-�nancial �rms use loans to �nance capital expenditures Kt. We
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consider �nancial frictions in the banking sector only. We assume that there is no �nancial or

real friction in the non-�nancial �rm sector, and no friction in transferring funds between a

bank and non-�nancial �rms. Thus, the price of capital is equal to unity. The bank�s balance

sheet satis�es:

Nt +Dt = St = Kt: (2)

The banker maximizes the stock market value of the bank at any time t, denoted by Vt (Nt) :

Note that we have suppressed the aggregate state variables as arguments in the value function

Vt: This value function satis�es the Bellman equation:

Vt (Nt) = max
Cbt ;Dt

Z T

t
e�rsCbsds+ e

�r(T�t)VT (NT ) ; any T > t; (3)

subject to some constraints to be speci�ed next. Here
�
Cbt
	
represents bank dividends. The

�rst constraint is the �ow of funds constraint given by:

dNt = rktNtdt+ (rkt � r)Dtdt� Cbt dt; (4)

where rkt represent the lending rate and r is the deposit rate. As long as the lending rate rkt is

higher than the deposit rate r; the bank prefers to keep accumulating assets until it overcomes

�nancial frictions in the form of borrowing constraints. In the literature, there are several

modeling strategies to limit bankers�ability to save to overcome borrowing constraints. For

example, Gertler and Karadi (2011) and Gertler and Kiyotaki (2010) assume that a banker exits

next period with a constant probability and becomes a worker. His position is then replaced by

a randomly selected worker, keeping the number in each occupation constant. Brunnermeier

and Sannikov (2011) assume that bankers may choose to retire.

In this paper, we assume that the banker must pay out dividends as a fraction � 2 (0; 1) of
his net worth:

Cbt � �Nt: (5)

The motivation for such constraint requires a richer micro-founded model that may involve

a combination of asymmetric information and a divergence of interests between shareholders

and managers. For our purpose, one may view (5) as a modeling shortcut for forcing banks

to pay out dividends, instead of keeping accumulating assets. Using the approach of Gertler

and Karadi (2011) or Gertler and Kiyotaki (2010) will also work and will not change our key

insights.
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The second constraint is that deposits and net worth cannot be negative, because the bank

can only borrow from the households:

Dt � 0; Nt � 0: (6)

The third constraint is a borrowing constraint. As long as the lending rate rkt is higher

than the deposit rate r; the bank prefers to expand its assets as much as possible by borrowing

additional funds from households. To limit this ability, we introduce the following borrowing

constraint:

Dt � Vt (�Nt) ; (7)

where � 2 (0; 1] represents the degree of �nancial frictions. This is the key innovation of the
model, which requires some explanations. The micro-foundation of this borrowing constraint

is based on the optimal contract between the bank and households (depositors) with limited

commitment/enforcement. To best understand this, we consider a discretized setup. Suppose

time is denoted by t = 0; dt; 2dt; 3dt; ::: At each time t, the contract speci�es a deposit Dt to

the bank and a repayment erdtDt to the households at time t+ dt: The bank lends out Nt+Dt

to non-�nancial �rms and earn returns erktdt (Nt +Dt) : It pays out dividends Cbt dt. Thus its

�ow of funds constraint is given by:

Nt+dt = erktdtNt +
�
erktdt � erdt

�
Dt � Cbt dt:

If the bank decides to repay deposits to the households, its value is given by:

Cbt dt+ e
�rdtVt+dt (Nt+dt)

= erktdtNt +
�
erktdt � erdt

�
Dt �Nt+dt + e�rdtVt+dt (Nt+dt) ;

where we have used the above �ow of funds constraint to substitute out Cbt : However, the bank

has limited commitment. It may take deposits Dt and default on the deposit liabilities by not

repaying erdtDt. If this happens, the depositors can capture a fraction � of bank net worth (or

bank capital) Nt. Instead of liquidating these assets, the depositors reorganize the bank and

keep it running in the next period using recovered bank capital �Nt: The bank and depositors

renegotiate deposit repayments by Nash bargaining. Suppose the bank has all bargaining

power. The depositors can only get the threat value, which is the stock market value of the

reorganized bank e�rdtVt+dt (�Nt) : The bank gets the remaining value.
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Enforcement of the contract requires the value of not defaulting is not smaller than the

value of defaulting, i.e.,

erktdtNt +
�
erktdt � erdt

�
Dt �Nt+dt + e�rdtVt+dt (Nt+dt)

� erktdtNt + e
rktdtDt �Nt+dt + e�rdtVt+dt (Nt+dt)� e�rdtVt+dt (�Nt) :

This incentive constraint ensures that there is no default in an optimal contract. Simplifying

this constraint yields:

erdtDt � e�rdtVt+dt (�Nt) :

Taking the continuous time limits as dt! 0 yields (7).

Note that the borrowing constraint in (7) is di¤erent from that in Gertler and Karadi (2011)

or Gertler and Kiyotaki (2010). These studies assume that bankers can divert a fraction � of

assets St: If this happens, the depositors force the closure of the bank and recover the remaining

fraction of assets, (1� �)St: In this case, the incentive constraint becomes:

Vt (Nt) � �St:

2.3 Non-�nancial Firms

There is a continuum of identical non-�nancial �rms of measure unity. Each non-�nancial �rm

produces output using a constant-returns-to-scale technology with capital and labor inputs.

We may write aggregate production function as:

Yt = K�
t L

1��
t ; � 2 (0; 1) ;

where Yt, Kt; and Lt represent aggregate output, capital and labor respectively. Competitive

pro�t maximization implies:

(1� �)K�
t L

��
t = wt:

It follows that the gross pro�ts per unit of capital are given by:

Yt � wtLt
Kt

= �K��1
t L1��t :

Assume that there is no real or �nancial friction in the non-�nancial �rm sector. A non-

�nancial �rm obtains funds from banks by issuing equity at the price of unity. The �rm uses

the funds to purchase capital Kt and returns dividends �K��1
t L1��t to the banks. Thus, the

lending rate is equal to the capital (or equity) return:

rkt = �K��1
t L1��t � �; (8)
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where � is the depreciation rate of capital. Equation (8) also implies that the marginal product

of capital �K��1
t L1��t is equal to the user cost of capital, which is equal to the sum of the

lending rate rkt and the depreciation rate �.

2.4 Competitive Equilibrium

A competitive equilibrium consists of quantities fCt; Cbt ;Kt; Nt; Dt; Ltg; prices frkt; wtg; and
the value function fVt (Nt)g such that households, bankers and �rms optimize and markets
clear: Lt = 1 and

dKt = K�
t L

1��
t dt� �Ktdt� Ctdt: (9)

3 Equilibrium Characterizations

In this section, we �rst analyze a single bank�s decision problem taking prices frkt; wtg as given.
We then conduct aggregation and characterize equilibrium by a system of di¤erential equations.

Finally, we study bubbleless and bubbly equilibria.

3.1 Optimal Contract

We �rst solve the optimal contracting problem (3) subject to (4), (5), (6), and (7), taking rkt

as given. Conjecture that the stock market value of the bank takes the following form:

Vt (Nt) = QtNt +Bt; (10)

where Qt and Bt are to be determined aggregate states that are independent of individual

bank�s characteristics. We may interpret Qt as the shadow price of net worth. We will show

below that both Bt = 0 and Bt 6= 0 can be part of an optimal contract because the contracting
problem does not give a contraction mapping due to the incentive constraint (7). Because of

limited liability, we only consider the solution with Bt � 0 for all t: We interpret the term Bt

as a bubble component of the stock market value of the bank. We will show that both Bt = 0

and Bt > 0 can sustain in equilibrium.

We summarize the solution to the contracting problem in the following:

Proposition 1 If Qt > 1 and rkt > r; then Qt and Bt satisfy the following di¤erential equa-

tions:2

rQt = Qt [rkt + (rkt � r) �Qt] + �(1�Qt) + _Qt; (11)

2We use _Xt to denote dXt=dt for any variable Xt:
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rBt = Qt (rkt � r)Bt + _Bt; (12)

and the transversality conditions:

lim
T!1

e�rTQTNT = lim
T!1

e�rTBT = 0: (13)

The intuition behind this proposition is the following: If Qt > 1; then dividend constraint

(5) must bind. Paying out one dollar dividends gives the banker one dollar bene�t. But

retaining one dollar raises the marginal value of the bank stock by Qt dollars. If Qt > 1; then

the banker prefers to reduce dividend payment until the constraint (5) binds. If rkt > r; then

the bank prefers to lend as much as possible by borrowing from depositors until the borrowing

constraint (7) binds.

Given the conjectured value function in (10), we rewrite the borrowing constraint as:

Dt = Nt�Qt +Bt: (14)

We can then substitute the conjectured value function in (10) into the Bellman equation (3)

subject to (4), (5), (6), and (14). Solving this problem and matching coe¢ cients, we obtain

di¤erential equations (11) and (12) in which both Qt and Bt are non-predetermined. There are

two types of solutions to these di¤erential equations. If both depositors and banks believe that

the bank stock has a low value in that Bt = 0 for all t; then the optimal contracting problem is

characterized by equation (11) only. If both depositors and banks believe that the bank stock

has a high value because it contains a bubble component Bt > 0; then the bubble relaxes the

borrowing constraint (7) and allows the bank to attract more deposits (see (14)). This allows

the bank to make more loans and generates more pro�ts and dividends, justifying the initial

belief of a high value. This positive feedback loop mechanism can support a bubble.

Equation (11) is an asset-pricing equation. The left-hand side of this equation gives the

return on bank capital. The right-hand side consists of dividends and capital gains. Dividends

consist of returns from bank lending net of deposits payments and bank payouts.

To interpret equation (12), we rewrite it as:

r = Qt (rkt � r)| {z }
dividend yields

+ _Bt=Bt| {z }
capital gains

if Bt > 0: (15)

This equation says that the return on the bubble is equal to the capital gains plus dividend

yields. The second term on the right-hand side of the above equation represents capital gains.

The �rst term represents dividend yields. The intuition is as follows. One dollar of the bubble
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allows the bank to relax the borrowing constraint by one dollar. This allows the bank to attract

one more dollar of deposits and hence makes one more dollar of loans. This raises bank net by

rkt � r dollar. Thus, the net bene�t to the bank is (rkt � r) times the shadow price Qt of its
net worth.

The restriction on the bubble on intrinsically useless assets or on assets with exogenously

given payo¤s is di¤erent from (15). In particular, there is no dividend yields term. This means

that the transversality condition in (13) can rule out bubbles in in�nite-horizon models. By

contrast, because of the dividend yields term in (15), the transversality condition cannot rule

out bubbles in our model.

3.2 Equilibrium System

We now aggregate individual decision rules and impose market-clearing conditions to derive

the equilibrium system.

Proposition 2 If Qt > 1 and rkt > r; then the three variables, (Bt; Qt; Nt) ; satisfy the equi-

librium system, (11), (12), and

_Nt = (rkt � � + (rkt � r) �Qt)Nt + (rkt � r)Bt; (16)

where N0 is given and

rkt = � ((�Qt + 1)Nt +Bt)
��1 � �: (17)

The transversality condition (13) also holds.

Once we obtain Bt; Qt and Nt; we can then derive the equilibrium capital, output, con-

sumption, and wage as follows:

Kt = (�Qt + 1)Nt +Bt;

Yt = K�
t ; wt = (1� �)K�

t ;

Ct = K�
t + �Kt � _Kt:

As we discussed in the previous subsection, there may be two types of equilibrium. In a

bubbleless equilibrium, Bt = 0 for all t: In a bubbly equilibrium, Bt > 0 for all t: To analyze the

existence of these two types of equilibrium, we �rst study steady state in which all aggregate

variables are constant over time. We then study local dynamics around a steady state. We

shall impose conditions such that Qt > 1 and rkt > r in a neighborhood of a steady state.
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3.3 First-Best Benchmark

We start with the �rst-best benchmark in which the lending rate is equal to the deposit rate,

rFBkt = r: In addition, the shadow price of net worth is equal to one, QFBt = 1: In this case,

there is no borrowing constraint (7). The �rst-best capital stock KFB is equal to a constant:

KFB =

�
r + �

�

� 1
��1

:

Banks transfer deposits DFB = KFB to non-�nancial �rms and make zero pro�ts. The

�rst-best consumption is equal to

CFB =
�
KFB

�� � �KFB:

3.4 Bubbleless Equilibrium

Now, we introduce the borrowing constraint (7) and analyze the bubbleless equilibrium in which

Bt = 0 for all t: We �rst consider steady state. We use a variable without a subscript t to

denote its steady state value. Then, by Proposition 2, Q and N satisfy

rQ = (rk + (rk � r) �Q)Q+ �(1�Q); (18)

(rk � � + (rk � r) �Q)N = 0; (19)

where

rk = � (�QN +N)��1 � �: (20)

Solving the above equations yields:

Proposition 3 If � > r; then a steady-state equilibrium (Q�; N�) without banking bubbles

exists. In this equilibrium,

r�k = r +
r (� � r)
r + ��

; Q� =
�

r
;

N� =
1

�Q� + 1

�
r�k + �

�

� 1
��1

:

Condition � > r ensures that Q� > 1 and r�k > r so that we can apply Proposition 2 to

derive the steady state. In a steady state, equation (4) implies that

0 = rkN + (rk � r)D � �N; (21)
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where we use the fact that Cb = �N: Thus, we obtain

K = N +D =
� � r
rk � r

N: (22)

It follows that the steady-state leverage ratio is given by

K

N
=

� � r
rk � r

:

In a bubbleless steady state, we substitute r�k given in Proposition 3 into the above equation,

we can show that K=N > 1:

Next, turn to the equilibrium dynamics which are characterized by the following system of

di¤erential equations by Proposition 2:

_Qt = (r + �)Qt �Qt [rkt + (rkt � r) �Qt]� �;

_Nt = (rkt � � + (rkt � r) �Qt)Nt; N0 given;

where

rkt = � ((�Qt + 1)Nt)
��1 � �:

This nonlinear system has no closed form solution. But we can solve this system numerically

using a �nite-di¤erence method. Figure 1 illustrates the phase diagram.

We can show that the steady state is a saddle point. Both isoclines _Nt = 0 and _Qt = 0 are

downward sloping. We use the phase diagram to understand why the steady state is a saddle

point. We �rst look at the isoclines _Qt = 0, which draws the combination of Qt and Nt such

that _Qt = 0. Denote such combination of Nt and Qt as N = q(Q). We �rst show that any

point on the right of the isoclines _Qt = 0 satis�es _Qt > 0. In fact, for any Nt > q(Qt), we have

_Qt = (r + �)Qt �Qt [rkt + (rkt � r) �Qt]� �

> (r + �)Qt � �

�Qt
h
� ((�Qt + 1) q(Qt))

��1 � � +
�
� ((�Qt + 1) q(Qt))

��1 � � � r
�
�Qt

i
= 0;

where the equality in the last line comes from the de�nition of q(Q). The intuition is that for

a given Qt, a higher level of net worth will reduce the lending rate. Hence the return of the net

worth from lending decreases. To achieve a required return r, there must be some additional

compensation from capital gain. Conversely, any point on the left of the isoclines _Qt = 0 then

implies _Qt < 0.
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We now turn to the isocline _Nt = 0, which gives the combination of Qt and Nt such that

_Nt = 0. We denote N = n(Q) for such combination. We how that _Nt < 0 for any point on

right of the isocline _Nt = 0. For Nt > n(Qt), we have

_Nt = (rkt � � + (rkt � r) �Qt)Nt

<
�
� ((�Qt + 1)n(Qt))

��1 � � � � +
�
� ((�Qt + 1)n(Qt))

��1 � � � r
�
�Qt

�
Nt

= 0;

where the equality in the line comes from the de�nition of n(Q). The intuition is as follows.

For given Q, a higher level of N reduces the return on the lending rate. As a result, the net

return on the net worth will be less than the dividend distribution rate �. As a result, bank net

worth must fall, i.e., _Nt < 0. Conversely, any point on the left of the isoclines _Nt = 0 implies

_Nt > 0.

Proposition 3 shows that the two isoclines q(Q) and n(Q) cross at the steady state level

Q� = �=r. We now show that q(Q) > n(Q) if Q < Q� and q(Q) < n(Q) if Q > Q�. Notice that

rkt can be written as a function of Qt and Nt as rkt = rk(Qt; Nt). We can rewrite the isoclines

_Qt = 0 as

rQt � � = Qt [rk(Qt; Nt)� � + (rk(Qt; Nt)� r) �Qt] ;

= Qt
_Nt
Nt
;

So on the isoclines _Qt = 0; _Nt=Nt > 0 if and only if Qt > Q� = �=r. This implies that

q(Q) < n(Q) if Qt > Q� and q(Q) > n(Q) if Qt < Q�. In other words, the locus of _Qt = 0 lies

on the left side of _Nt = 0 for Qt > Q� but on the right of _Nt = 0 for Qt < Q�.

Figure 1 plots the phase diagram, where the arrows indicate the direction of changes for Qt

and Nt. The saddle path is downward sloping. The intuition is the following: If the bank net

worth Nt is lower than the steady state value, then the lending rate rkt is relatively high. This

causes the bank to raise more lending and hence the bank gradually accumulates more bank

capital. This in turn lowers the lending rate rkt and hence the shadow value of the net worth

Qt gradually decreases to the steady state. The case when Nt is higher than the steady state

value can be similarly analyzed.
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3.5 Deterministic Banking Bubbles

Now, we tun to the equilibrium with banking bubbles in which Bt > 0 for all t > 0: By

Proposition 2, the following conditions hold in the bubbly steady-state equilibrium:

rQ = (rk + (rk � r) �Q)Q+ �(1�Q); (23)

rB = Q (rk � r)B; (24)

0 = (rk � � + (rk � r) �Q)N + (rk � r)B; (25)

where

rk = � ((�Q+ 1)N +B)��1 � �: (26)

We use a variable with a superscript b to denote its bubbly steady-state value. Solving the

above system of equations yields:

Proposition 4 If

0 < � <
�

r
� r

�
� 1; (27)

then both steady-state equilibria with and without banking bubbles exist. In the steady-state

bubbly equilibrium,

Qb =
r + �

� � �r > 1; (28)

rbk = r +
r(� � r�)
r + �

> r; (29)

B

N b
=
�
�
rbk � � +

�
rbk � r

�
�Qb

�
rbk � r

> 0: (30)

In addition, rbk < r�k and hence K
b > K�:

Condition (27) ensures that � > r so that Qb > 1 and rbk > r: As a result, we can apply

Proposition 2 in the neighborhood of the steady state. In addition, it implies that a bubbleless

equilibrium also exists by Proposition 3. Condition (27) also implies that B=N b > 0:

Using Propositions 3 and 4, we can easily show that rbk < r�k: Thus, the capital stock in the

bubbly steady-state is larger than that in the bubbleless steady state. The intuition is that

banking bubbles allow banks to relax borrowing constraints and attract more deposits. Thus,

banks make more loans to �nance investment, leading to a raise in the capital stock.

Next, we discuss the equilibrium dynamics. There is no closed-form solution for the bubbly

equilibrium system characterized in Proposition 2. The analysis of stability of the system

16



is also complex. Thus, we present a numerical example to illustrate the solution using the

same parameter values as those in Figure 1. As Proposition 4 shows, these parameter values

imply that both bubbleless and bubbly equilibria exist. We �nd that the bubbly steady-state

capital stock is equal to Kb = 22:56; which is larger than the bubbleless steady state capital

stockK� = 19:81: In addition, the bubbly state (Qb; B;Nb) = (1:49; 11:56; 7:61) is a local saddle

point.3 This implies that given an initial value (close to the steady state) for the predetermined

variable Nt; there exist initial values for the non-predetermined variables Qt and Bt such that

(Qt; Bt; Nt) converge to the steady state along a saddle path. Figure 2 plots the equilibrium

solution for paths of (Nt; Qt; Bt; Vt; Kt; rkt; Yt; Dt) respectively. We suppose that the initial

level of bank net worth is lower than the steady state value. In this case, the bank makes less

lending, which makes the �rm�s initial capital stock lower than its steady steady level. This

causes the cost of capital or the lending rate to be higher than the steady state level.

Given the parameter values in the example, Proposition 4 implies that a bubbly equilibrium

exists and the bank has an incentive to create a bubble to relax the borrowing constraint. The

existence of a bubble allows the bank to attract more deposits and make more lending. As a

result, the capital stock rises, leading to the rise in output. As more �rm capital and bank

capital are gradually built up, the stock market value of the bank rises and the cost of capital

and the lending rate fall over time. The banking bubble also falls over time. In the long run,

all these variables converge to the steady state.

4 Stochastic Banking Bubbles

We have shown that both bubbleless and bubbly equilibria can coexist under some assumptions.

We now follow Blanchard and Watson (1982) and Weil (1987) to construct an equilibrium with

stochastic bubbles. Following the continuous time modeling of Miao and Wang (2011a), we

assume that all agents in the economy believe that the banking bubble may burst in the future.

The arrival of this event follows a Poisson process with the arrival rate �: After the bubble

bursts, it cannot reappear in the future. Otherwise, if rational agents can anticipate that the

bubble will reemerge in the future, there will be arbitrage opportunities following the initial

burst of the bubble. To generate a new bubble, we need a new asset or a new �rm to be created

to carry this bubble (see Martin and Ventura (2011), Wang and Wen (2011), and Miao and

Wang (2011d) for models of recurrent bubbles).

3The multiplicity of equilibria in our model has a di¤erent nature than the indeteminancy literature surveyed
in Farmer (1999) or Benhabib and Farmer (1999).
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We solve for the equilibrium with stochastic bubbles by backward induction. After the

burst of the banking bubble, the economy enters the bubbleless equilibrium. We have solved

this equilibrium in Section 3. Here we write the bubbleless equilibrium shadow value of the net

worth in a feedback form: Q�t = g (Nt) ; where g is some function. We write the stock market

value of the bank after the bubble bursts as V � (Nt; Q�t ) = Q�tNt: Turn to the case in which the

bubble has not bursted. In this case, the Bellman equation is given by

rV (Nt; Qt; Bt) = max
Dt; Cbt

Cbt + VN (Nt; Qt; Bt)
�
rktNt + (rkt � r)Dt � Cbt

�
(31)

+VQ (Nt; Qt; Bt) _Qt + VB (Nt; Qt; Bt) _Bt

+� [V � (Nt; Q
�
t )� V (Nt; Qt; Bt)] ;

subject to (5), (6), and (7), where (Qt; Bt) is the aggregate state vector and Nt is the individual

state. This Bellman equation actually describes an asset pricing equation for the bank stock.

The left-hand side of equation (31) is the return on the bank stock. The right-hand said gives

dividends Cbt plus capital gains. Capital gains consist of four components. The �rst three

components are due to changes in bank net worth Nt; shadow value Qt and the bubble Bt: The

last component is due to changes in beliefs. When the bubble bursts with arrival rate �, the

bank value shifts from V (Nt; Qt; Bt) to V � (Nt; Q�t ) : The following proposition characterizes

the solution:

Proposition 5 If Qt > 1 and rkt > r; then the equilibrium (Qt; Bt; Nt) before banking bubbles

burst satis�es the system of di¤erential equations:

(r + �)Qt = Qt [rkt + (rkt � r) �Qt] + (1�Qt) � + �Q�t + _Qt; (32)

(r + �)Bt = Qt (rkt � r)Bt + _Bt; (33)

and (16), where rkt satis�es equation (17). Here, Q�t = g (Nt) is the equilibrium shadow price

of net worth after banking bubbles burst.

As in Weil (1987) and Miao and Wang (2011a), the possibility of bubble bursting gives a

risk premium so that the return on the bubble is equal to r + � as revealed by equation (33).

Since there is no closed-form solution to the system of di¤erential equations in the proposition,

we solve this system numerically using the shooting method combined with the �nite di¤erence

method.
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Figure 3: The transition paths when the bubble bursts at time t = 2:5: The parameter values
are r = 0:01; � = 0:04; � = 0:1; � = 0:33; and � = 0:7:

To simplify the analysis, we follow Weil (1987), Kocherlakota (2009), and Miao and Wang

(2011a) and focus on a particular type of stationary equilibrium with stochastic bubbles. This

equilibrium has the feature that all equilibrium variables are constant before bubbles burst.

After bubbles burst, the economy then moves to the bubbleless equilibrium path. Using Propo-

sition 5 and setting Bt = B; Qt = Q; Nt = N; and rkt = rk before bubbles burst, we obtain

the following system of nonlinear equations:

(r + �)Q = Q [rk + (rk � r) �Q] + (1�Qt) � + �g (N) ; (34)

r + � = Q(rk � r); (35)

0 = (rk � � + (rk � r) �Q)N + (rk � r)B; (36)

rk = � ((�Q+ 1)N +B)��1 � �: (37)

To solve this system, we need to know the function g: This function can be obtained by solving

the equilibrium after bubbles burst using the shooting and �nite di¤erence method.

Figure 3 presents a numerical example. In this example, we assume that banking bubbles

burst at time t = 2:5: Immediately after the burst of banking bubbles, the bank�s borrowing
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constraint tightens, causing deposits to fall discontinuously at t = 2:5: Deposits then gradually

move to the lower bubbleless steady-state level. Due to the fall of deposits, the bank�s balance

sheet worsens. Thus, the bank reduces lending and hence the lending rate rises. This in turn

causes non-�nancial �rms to reduce investment and production. Thus, output falls discon-

tinuously and then gradually moves to the lower bubbleless steady-state level. This example

illustrates that even though there is no shock to fundamentals of the economy, the shift in

beliefs causes the collapses of banking bubbles. This in turns causes a recession.

5 Bank Capital Requirements

Bank capital requirements determine how much liquidity is required to be held for a certain

level of assets through regulatory agencies such as the Bank for International Settlements,

Federal Deposit Insurance Corporation, or Federal Reserve Board. These requirements are

put into place to ensure that �nancial institutions are not participating or holding investments

that increase the risk of default and that they have enough capital to sustain operating losses

while still honoring deposit withdrawals. Bank capital requirements enhance the stability of

the banking system. The traditional rationale for these requirements is related to banks�risk-

taking behavior. Due to limited liability and the access to secured deposits, banks have an

incentive to choose risky projects which raise the probability of bank failure. Increasing the

percentage of the investment funded by bank capital limits this risk taking activity for banks.

In this section, we argue that bank capital requirements may prevent the formation of

banking bubbles. But if the capital requirements are too stringent, then banks will lend less

and charge more for loans, thereby reducing the steady-state capital stock and e¢ ciency. We

model bank capital requirements as follows:

Nt � � (Dt +Nt) ; (38)

where � 2 (0; 1) is the bank capital requirement ratio. Rewrite (38) as

Dt �
1� �
�

Nt: (39)

We incorporate this inequality to study the e¤ects of bank capital requirements on equilibrium

outcomes. We suppose that condition (27) in Proposition 4 is satis�ed so that both bubbleless

and bubbly equilibria coexist.
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Proposition 6 Suppose that condition (27) in Proposition 4 is satis�ed. Then: (i) If

1� �
�

>
� � rbk
rbk � r

; (40)

then the bubbleless and bubbly equilibria characterized in Proposition 4 are una¤ected by the

bank capital requirements. (ii) If

0 <
� � r�k
r�k � r

<
1� �
�

<
� � rbk
rbk � r

; (41)

then a banking bubble cannot exist and only the bubbleless equilibrium characterized in Propo-

sition 3 exists. (iii) If

0 <
1� �
�

<
� � r�k
r�k � r

; (42)

then a banking bubble cannot exist. The steady-state lending rate and the capital stock satis�es

rk = �� + (1� �) r > r�k; K < K�:

This proposition shows that if the bank capital requirement ratio is too small, then bank

capital requirements are ine¤ective in that they do not a¤ect the equilibrium without these

requirements. Thus, they cannot prevent the existence of banking bubbles. If the bank capital

requirement ratio is too large, then bank capital requirements can prevent the formation of

banking bubbles. However, they lead to a high lending rate and low steady-state capital. If

the bank capital requirement rate is in the intermediate range, then a banking bubble cannot

exist and the economy is in the bubbleless equilibrium studied in Section 3.4.

6 Credit Policy

During the recent �nancial crisis, many central banks around the world, including the U.S.

Federal Reserve (Fed), used their powers as a lender of last resort to facilitate credit �ows. As

Gertler and Kiyotaki (2010) point out, the Fed employed three general types of credit policies

during the crisis. The �rst is discount window lending. The Fed used the discount window to

lend funds to commercial banks that in turn lent them out to non-�nancial borrowers. The

second is direct lending. The Fed lent directly in high grade credit markets, funding assets

that included commercial paper, agency debt and mortgage backed securities. The third is

equity injections. The Treasury coordinated with the Fed to acquire ownership positions in

commercial banks by injecting equity.
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For simplicity, we consider the impact of direct lending policy. We now introduce a central

bank in our baseline model. Because the collapse of banking bubbles tightens banks�borrow-

ing constraints, households reduce deposits and banks reduce lending, causing a crisis. The

central bank can help credit �ows by direct lending to non-�nancial �rms. Suppose that the

central bank lends  tKt to non-�nancial �rms. Suppose that  t responds to the credit market

condition. In particular, it responds to the credit spreads rkt � r > 0: As we show in Section

4, during the crisis period, credit spreads rise. Thus they can be used as an indicator of eco-

nomic activity. Since the riskfree rate r is constant in our model, changes in credit spreads are

e¤ectively changes in the lending rate rkt. To simplify computation, assume that  t takes the

following feedback rule

 t = 1�
�
r + �

rkt + �

�
2 (0; 1) ; (43)

where the parameter  > 0 measures the strength of the feedback. This rule implies that a

larger credit spread (or a larger rkt) induces more direct lending. In addition, a larger value of

 implies that the central bank lends more to the non-�nancial �rms. When  = 0;  t = 0 and

hence the model reduces to that in Section 4 without credit policy.

Assume that direct lending is �nanced by lump-sum taxes. However it is costly because the

central bank is less e¢ cient at intermediating funds. Following Gertler and Kiyotaki (2010),

assume that the central bank faces an e¢ ciency cost � per unit of lending, which may be thought

of as a cost of evaluating and monitoring borrowers. For simplicity, we ignore government

spending and hence the resource constraint is given by

Ct + It + � tKt = Yt:

Given the direct lending policy, the balance sheet equation becomes

Kt = Nt +Dt +  tKt:

This equation says that capital expenditure can be �nanced by private bank lending Nt +Dt

and central bank lending  tKt: It follows from the above equation and equation (43) that

Kt =
1

1�  t
(Nt +Dt) =

�
rkt + �

r + �

�
(Nt +Dt) : (44)

Note that above modeling of direct lending is equivalent to having the central bank channel

funds to non-�nancial borrowers via private banks, as occurred with depository facilitates set

up prior to the Lehman collapse.
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We shall solve the equilibrium with stochastic bubbles and with credit policy by backward

induction. We �rst start with the case after bubbles burst and then move back to solve the

case before bubbles burst.

6.1 Equilibrium after Bubbles Burst

As in Sections 3 and 4, we can show that if Qt > 1 and rkt > r; then the constraints (5) and (7)

bind. We can also show that the stock market value of the bank is given by Vt (Nt) = QtNt: It

follows that Dt = �QtNt: Thus, the equilibrium system for (Qt;Kt; Nt; rkt) after bubbles burst

is given by (11) and

_Nt = (rkt � � + (rkt � r) �Qt)Nt; (45)

Kt =

�
rkt + �

r + �

�
Nt (1 + �Qt) ; (46)

rkt = �K��1
t � �: (47)

The solution must also satisfy the standard transversality condition. Equation (45) follows

from (16) by setting Bt = 0: Equation (46) follows from (44). The last equation (47) follows

from (8) and the market-clearing condition Lt = 1: Using equations (46) and (47), we can

explicitly solve for Kt and hence rkt in terms of Nt and Qt :

Kt =

�
�Nt (1 + �Qt)

(r + �)

� 1
1+��

: (48)

Substituting this solution into (11) and (45), we �nd that the equilibrium system reduces to

two di¤erential equations for two variables (Qt; Nt) : We write the solution in a feedback form

Q�t = G (Nt) for some function G: Note that the feedback rule speci�ed in (43) facilitates this

characterization of the solution. This simpli�cation is very useful when we analyze the case

before bubbles burst in the next subsection.

We can use (11) and (45) to derive the steady-state solution:

Q� =
�

r
, r�k = r +

r (� � r)
r + ��

:

This solution is the same as that in the case without credit policy characterized in Proposition

3. As a result, it follows from (47) that

K� =

�
1

�

�
r + � +

r (� � r)
r + ��

�� 1
��1

:
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This implies that the steady-state capital stock is also the same as that in the case without

credit policy. Labor is exogenously given, it follows that credit policy also does not a¤ect the

steady-state output, consumption and the lending rate after bubbles burst.

By equation (48), we can solve for bank net worth

N� =
(r + �)

�
(K�)1+��

1 + ��=r
:

Thus, credit policy a¤ects the steady-state net worth of the bank after bubbles burst. A larger

value of  implies that the central bank lends more to the non-�nancial �rms, which substitute

bank lending and hence lowers bank net worth. It follows that credit policy also a¤ects the

steady-state level of deposits after bubbles burst.

6.2 Equilibrium before Bubbles Burst

Turn to the case before the bubble bursts. As in Section 4, we can show that the stock market

value of the bank before bubbles burst is given by

Vt (Nt) = QtNt +Bt;

where Bt > 0 represents a bubble. If Qt > 1 and rkt > r; then the constraints (5) and (7)

bind. It follows that Dt is given by (14). We can then show that the equilibrium system for

(Bt; Qt; Nt;Kt; rkt) before bubbles burst is given by equations (32), (33), (16), (47) and

Kt =

�
rkt + �

r + �

�
[Nt (1 + �Qt) +Bt] ; (49)

where Q�t = G (Nt) in equation (32). The �rst four equations are the same as those derived

before. The last equation (49) follows from the new balance sheet equation (44) and the binding

borrowing constraint.

As in Section 4, we study a particular type of stationary equilibrium with stochastic bub-

bles and credit policy. This equilibrium has the feature that all equilibrium variables are

constant before bubbles burst. After bubbles burst, the economy then moves to the bubble-

less equilibrium path. Using equations (32), (33), (16), (47), and (49), we can show that the

equilibrium solution for (B;Q;N;K; rk) before bubbles burst satisfy the following system of

nonlinear equations: (35), (36), and

(r + �)Q = Q [rk + (rk � r) �Q] + (1�Qt) � + �G (N) ; (50)

K =

�
�

(r + �)
[N (1 + �Q) +B]

� 1
1+��

; (51)
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Figure 4: Transition paths when the bubble bursts at time t = 2:5: Dashed lines describe the
case without credit policy. Solid lines describe the case with credit policy. For this case, we set
 = 0:75 and � = 0:01: Credit spreads are measured in basis point. The parameter values are
r = 0:01; � = 0:04; � = 0:1; � = 0:33; and � = 0:7:

rk = �K��1 � �:

Notice that this system is similar to that described in Section 4. There are two di¤erences.

First, G (N) appears in (50), while g (N) appears in (35). This is because credit policy changes

the bubbleless equilibrium path for Qt: The second di¤erence is that credit policy gives a new

balance sheet equation (51). To solve the above system, one needs to know the function G (N) :

As in Section 4, we can solve for it using the the shooting and �nite di¤erence method.

Figure 4 presents a numerical example. We assume that banking bubbles burst at time

t = 2:5: Dashed lines describe the equilibrium paths with credit policy, while solid lines describe

the equilibrium paths without credit policy. This �gure reveals that credit policy can reduce the

size of banking bubbles. Immediately after the collapse of banking bubbles, credit spreads rise.

The feedback rule of credit policy implies that the central bank should increase direct lending

to the non-�nancial �rms. As credit spreads gradually return to the bubbleless steady-state

level, the fraction of direct lending  t gradually decreases to the steady-state level. The central

bank�s direct lending substitutes part of the commercial bank�s lending and hence deposits in
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the case with credit policy are smaller than those without credit policy. However, total lending

Kt to the non-�nancial �rms is higher in the case with credit policy. This causes the fall of

output in the case with credit policy to be less severe than that in the case without credit

policy. In terms of welfare as measured by consumption units, there are two e¤ects. First,

credit policy mitigates the fall of output and investment after the collapse of banking bubbles,

which bene�ts households. Second, credit policy induces an e¢ ciency loss in terms of output.

The net e¤ect depends on which one dominates.

7 Conclusion

We have developed a continuous-time macroeconomic model with a banking sector in which

banks face endogenous borrowing constraints. There is no uncertainty about economic funda-

mentals. A positive feedback loop mechanism generates a banking bubble. Changes in people�s

beliefs can cause the collapse of the banking bubble. Immediately after the collapse of the

banking bubble, households withdraw deposits and the bank reduces lending to non-�nancial

�rms. Consequently, non-�nancial �rms cut back investment, causing output to fall. Credit

policy that responds to credit spreads in a feedback rule can mitigate economic downturns. But

it incurs an e¢ ciency cost. Bank capital requirements can prevent the formation of a banking

bubble. However, they limit leverage and hence reduce lending, causing investment and output

to fall.

Our model is stylized and can be generalized in many dimensions. First, it would be

interesting to introduce uncertainty in the model. It is likely that both uncertainty and beliefs

are important during �nancial crises. Second, it is straightforward to introduce risk aversion and

endogenous labor choice in the model. This makes the model more realistic, but complicates

the analysis without changing our key insights. Third, it would be interesting to introduce

recurrent banking bubbles (e.g., Martin and Ventura (2011), Wang and Wen (2011), and Miao

and Wang (2011d)) and study the quantitative implications of banking bubbles.
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Appendix

A Proofs

Proof of Proposition 1: We write the bank�s value function as Vt (Nt) = V (Nt; Qt; Bt) :

By standard dynamic programming theory, it satis�ed the Bellman equation:

rV (Nt; Qt; Bt) = max
Cbt ;Dt

Cbt + VN (Nt; Qt; Bt)
�
rktNt + (rkt � r)Dt � Cbt

�
+VQ (Nt; Qt; Bt) _Qt + VB (Nt; Qt; Bt) _Bt;

subject to constraints (5), (6) and (7). We conjecture that the value function takes the form

in (10). Substituting this conjecture into the above Bellman equation yields:

r (QtNt +Bt) = max
Cbt ;Dt

Cbt +Qt

�
rktNt + (rkt � r)Dt � Cbt

�
+Nt _Qt + _Bt:

By this equation, if Qt > 1, then constraint (5) binds so that Cbt = �Nt: If rkt > r, then the

borrowing constraint (7) binds so that

Dt = Vt (Nt) = Nt�Qt +Bt:

Substituting the solution for Cbt and Dt into the above Bellman equation yields:

r (QtNt +Bt) = Qt [rktNt + (rkt � r) (Nt�Qt +Bt)] + (1�Qt) �Nt (A.1)

+Nt _Qt + _Bt:

Matching coe¢ cients for Nt and the remaining terms on the two sides of the equation yields

(11) and (12). Q.E.D.

Proof of Proposition 2: By Proposition 1, if Qt > 1 and rkt > r; then Qt and Bt satisfy

equations (11) and (12). Substituting the solution Cbt = �Nt and Dt = Nt�Qt + Bt into the

�ow of funds constraint (4) yields (16). Equation (17) follows from (8), (2), and the market

clearing condition Lt = 1. Q.E.D.

Proof of Proposition 3: It follows from (19) that (rk � r) �Q = � � rk: Substituting this

expression into equation (18) yields Q� = �=r: We the use equations (19) and (20) to solve for

r�k and N
�; respectively. Q.E.D.
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Proof of Proposition 4: By equation (24),

r = (rk � r)Q: (A.2)

Substituting this equation into (23) yields:

rQ = rkQ+ �rQ+ �(1�Q): (A.3)

Combining the above two equations yields (28). Condition (27) ensures � > �r so that Qb > 1:

Substituting (28) into (A.2) yields (29). Again condition (27) ensures that rk > r: Substituting

equations (28) and (29) into (25), we obtain equation (30). We can check that B > 0 if and

only if condition (27) holds.

Using equation

�K��1 = rbk + �;

we can solve for the bubbly steady-state aggregate capital stock Kb: Note that equation (22)

also holds for the bubbly equilibrium. Substituting rbk in (29) and K
b into this equation, we

can solve for the bubbly steady-state net worth N b: Finally, we use equation (30) to solve for

the steady-state bubble B:

Proof of Proposition 5: Conjecture that the value function before bubbles burst takes the

following form:

V (Nt;Qt; Bt) = QtNt +Bt:

Thus, the borrowing constraint becomes

Dt � �QtNt +Bt:

Substituting the above conjecture into the Bellman equation (31) yields:

r (QtNt +Bt) = max
Cbt ;Dt

Cbt +Qt

�
rktNt + (rkt � r)Dt � Cbt

�
+� [Q�tNt � (QtNt +Bt)] +Nt _Qt + _Bt

By this equation, if Qt > 1; then the constraint (5) binds so that Cbt = �Nt. If rkt > r; then

the borrowing constraint binds so that

Dt = �QtNt +Bt:

29



Substituting these binding constraints into the Bellman equation yields:

r (QtNt +Bt) = (1�Qt) �Nt +QtrktNt +Qt (rkt � r) (�QtNt +Bt)

+� [Q�tNt � (QtNt +Bt)] +Nt _Qt + _Bt:

Matching coe¢ cients of Nt and terms not related to Nt on the two sides of this equation delivers

the equations given in Proposition 5. Q.E.D.

Proof of Proposition 6: Ignore capital requirements given in (39) for now. Then by assump-

tion, the bubbly and bubbleless equilibria coexist. The borrowing constraint for the bubbly

equilibrium is given by

Dt � �QtNt +Bt:

In the bubbly steady state,
Db

N b
� �Qb +

B

N b
=
� � rbk
rbk � r

:

where the equality follows from Proposition 4. In the bubbleless steady state, Proposition 3

implies that
D�

N� � �Q� =
� � r�k
r�k � r

:

By Proposition 4,
� � rbk
rbk � r

>
� � r�k
r�k � r

:

Now we introduce capital requirements given in (39). If condition (40) is satis�ed, then

the capital requirements are ine¤ective in the neighborhood of the bubbly steady state. If

condition (41) holds, then the capital requirement constraint (39) binds in the neighborhood of

the bubbly steady state, which prevents the existence of the bubbly equilibrium. But it does

not bind around the bubbleless steady state characterized in Proposition 3. Thus, a bubbleless

equilibrium around that steady state still exists. Finally if condition (42) holds, then the capital

requirement constraint (39) binds. The new steady state is given by

D

N
=
1� �
�

: (A.4)

In the steady state, equation (4) becomes

rkN + (rk � r)D � Cb = 0:

Since Cb = �N;
D

N
=
� � rk
rk � r

: (A.5)
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Using (A.4) and (A.5) yields

rk = �� + (1� �) r:

Condition (42) implies that rk > r� and hence K < K�: Q.E.D.
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