The Interbank Market Run and Creditor Runs*

Xuewen Liu
The Hong Kong University of Science and Technology
This version: October 2013

Abstract

We develop a general equilibrium model to study the interplay between the interbank market run (the run by banks on the interbank market, such as the (bilateral) Repo run) and creditor runs (runs by non-bank creditors on a bank) in a financial system. We show that the two types of runs interact and reinforce each other, and the feedback can amplify a small shock into the joint event of “interbank market freezing” and “liquidity evaporating”, which helps explain a systemic crisis. In the model, the interbank market run leads to a rise in the interbank rate. For an individual institution, a higher interbank rate, meaning a higher funding cost, results in more severe coordination problems among the (non-bank) creditors in debt rollover decisions. Creditors thus behave more conservatively and run more often. In turn, facing the increased chance of creditor runs, institutions choose to hoard more liquidity, strengthening the interbank market run. The model demonstrates financial contagions that occur through the channel of institutions fishing short-term funding from the same pool. Our paper highlights that coordination failures and self-fulfilling beliefs can play a critical role in a liquidity crisis.

Keywords: Interbank market, creditor runs, coordination risk, global games, general equilibrium

---

*I thank Sudipto Dasgupta, Shiyang Huang, Tianxi Wang and seminar participants at HKUST for helpful comments. I am especially grateful for discussions with Itay Goldstein and Hyun Song Shin. All errors are my own.

Contact: Xuewenliu@ust.hk.
1 Introduction

A salient feature of the recent financial crisis of 2007-2009 was systemic creditor runs on financial institutions. Short-term creditors in the institutions rushed for the exit and liquidity evaporated abruptly. The modern-day bank runs that occurred in the shadow banks were a vivid illustration of the evaporation of liquidity. \(^1\) Covitz et al. (2012) document that the runs on asset-backed commercial paper (ABCP) programs led to outstanding ABCP falling by $400 billion (one-third of the existing amount) during the second half of 2007. Duygan-Bump et al. (2012) document that the runs on prime money market funds (MMFs) caused asset value to shrink from $1300 billion to $900 billion within one week after the collapse of Lehman Brothers. Notably, systemic creditor runs coincided with the “freezing” of the interbank market (Gorton and Metrick (2011b) and Covitz et al. (2012)). The LIBOR-OIS spread (a primary measure of interbank lending rates) increased to over 300 bps at the peak of the crisis, in contrast to the pre-crisis level of less than 10 bps (see Figure 1). \(^2\)

![The LIBOR-OIS spread](image)

**Figure 1**: The interbank lending rates

This paper proposes a new rationale for interbank market lending, and provides a novel framework for understanding the origin of crisis, contagion and amplification. Our model explains the joint event of “interbank market freezing” and “liquidity evaporating”.

---

\(^1\) Runs on banks such as Northern Rock, Bear Stearns, Lehman Brothers, and others have been well recognized.

\(^2\) Data is from British Banker’s Association and Bloomberg.
In our framework, the role of the interbank market is to allow banks in the financial system with idiosyncratic fundamental shocks to trade short-term funding to solve their illiquidity problem and thus mitigate the potential creditor runs. The credit risk of debt in a financial institution can be decomposed into two parts: fundamental (insolvency) risk and coordination (illiquidity) risk. In our framework, the illiquidity risk is endogenous, originating in the insolvency risk. When the fundamental (insolvency) risk increases, the coordination problem among short-term creditors becomes more severe, who tend to run more likely on the institution, so the illiquidity risk also increases. Because institutions in the system have idiosyncratic fundamental shocks, the presence of an interbank market allows banks in the system to trade short-term funding to solve their illiquidity problems.

We develop a three-dates model. At the initial date, each bank in the system makes its portfolio (liquidity) allocation: amount of cash holdings and investment in a long-term illiquid asset (with a higher expected return). At the intermediate date, banks realize their idiosyncratic fundamental shocks (asset quality). Higher asset quality of a bank means that the bank’s long-term asset will realize the high cash flow with a greater probability at the final date. Creditors in a bank receive imperfect information about the type of their bank at the intermediate date, and need to make their rollover decisions. Creditors face a coordination problem between each other in rollover decisions.

We first solve the equilibrium at the intermediate date, that is, the equilibrium of a creditor-run game. In the benchmark case without an interbank market, we show that the probability of a creditor run for a bank is a decreasing function of the bank’s asset quality and cash holdings. Intuitively, higher asset quality means that insolvency risk of the bank at the final date is lower, and thus creditors are more willing to roll over their lending. Higher cash holdings mean that the bank is more liquid and can withstand a larger proportion of creditors’ interim withdrawals; hence, coordination risk (illiquidity risk) of the debt is lower. Therefore, cash holdings and asset quality are substituting in preventing a creditor run. In other words, a stronger bank, which has fewer creditors calling loans, needs less cash to prevent a creditor run. This gives rise to the role of an interbank market, where banks with heterogeneous fundamental shocks borrow and lend short-term funding.
In the case with an interbank market, we show that the probability of a creditor run for an individual bank depends on the bank’s asset quality as well as the funding condition in the interbank market. The funding condition affects how much liquidity the bank can raise from the interbank market and thus how much total liquidity the bank can access. The funding condition of the interbank market, in turn, depends on other banks’ status and their willingness to lend. Therefore, in the end, the probability of a creditor run for an individual bank depends on the status of the aggregate economy (more specifically, the asset quality distribution of banks in the system). In particular, the interbank market lending rate is uniquely determined in the competitive interbank market.

Then, we move to solve the equilibrium at the initial date. We consider both the constrained second-best equilibrium and the competitive equilibrium (laissez-faire equilibrium). In the constrained second-best equilibrium, the social planner aims to maximize the aggregate value of all banks in the economy by setting an optimal level of cash holdings for banks. The social planner faces the following tradeoff: a higher level of cash holdings in banks results in more banks in the system surviving at the intermediate date, but also less investment in long-term assets (with a higher return) in the economy. The tradeoff leads to a unique optimal level of cash holdings. In the competitive equilibrium, banks decide their ex ante cash holdings based on individual rationality. Concretely, every bank takes the interbank rate as given. Thus, banks trade off two investment opportunities at the initial date: investing cash in the long-term asset immediately and saving cash to lend in the interbank market later. We find a unique competitive equilibrium. In comparing these two equilibria, we find that the second best efficiency, in general, cannot be implemented by the competitive equilibrium. There is an over-investment of liquidity in the competitive equilibrium.

Finally, we use our framework to study the origin of crisis, contagion and amplification. A crisis occurs when an adverse aggregate shock on asset quality hits a part of the economy. Even if only one bank in the system gets into problems, the whole system can be affected due to the interbank market linkage. Concretely, when some banks (perhaps high-quality banks) realize worse asset quality than they expect, they need to hoard more liquidity in order to mitigate their illiquidity problems. This decreases the supply of short-term funding in the interbank market, with the result that the interbank rate goes up. As the interbank rate increases, ceteris paribus, an individual bank can raise less liquidity in the interbank market and thus becomes less capable of meeting its creditors’
early withdrawals. This triggers higher \textit{coordination risk} among creditors in rollover, who run more often. In anticipation of this, even the banks that do not suffer a shock on asset quality increase their liquidity hoardings to protect themselves, leading to an increase in the aggregate demand for liquidity, and consequently an even higher interbank rate, more severe runs on banks, and so on. In short, an adverse aggregate shock triggers a reinforcing spiral of a rise in interbank rate, a more severe coordination problem among creditors in debt rollover decisions, and greater liquidity hoarding demand of banks, resulting in the phenomenon of “liquidity evaporation” simultaneous with “interbank market freezing”.\footnote{In our model, the aggregate shock on asset quality, like the ABX index in reality, also plays a role of \textit{public information}, which forms another amplification.}

Our paper demonstrates financial contagions that occur through the channel of institutions fishing short-term funding from the same pool. This can explain some important phenomena in the recent crisis. For example, the crisis originated in the US, where there had been an asset fundamental shock - the subprime mortgage crisis; however, the first bank that suffered bank runs was Northern Rock, a UK bank. Also, when Northern Rock was experiencing runs in July 2007, there had been no (large-scale) \textit{fire sales} or liquidations yet around the world. We emphasize the very reason that Northern Rock and the US institutions shared the common short-term funding market.

As for the regulatory implications, our model conveys two messages. First, the ex ante liquidity regulation on financial institutions improves social welfare, which can solve the problem of inefficient supply of liquidity of individual institutions. Second, when a crisis occurs, an important ex post intervention policy is to inject liquidity into the financial system, which is crucial to break the vicious feedback cycle. This justifies the traditional as well as less traditional policy actions by the Federal Reserve and other major central banks in the recent crisis.\footnote{Allen et al. (2009) and Freixas et al. (2012) focus on studying ex post central bank interventions.} For example, in addition to cutting interest rates to practically zero, the Federal Reserve created emergency liquidity facilities (e.g., the Asset-Backed Commercial Paper Money Market Mutual Fund Liquidity Facility). In fact, the debate on whether central banks should provide emergency liquidity assistance went well before the recent crisis. Goodfriend and King (1988) (see also Bordo (1990), Kaufman (1991) and Schwartz (1992)) remark that banking policy was necessary at a time when financial markets
were underdeveloped; however, “with sophisticated interbank markets, banking policy has become redundant” – in other words, they argue that with a well-functioning interbank market, a solvent institution cannot be illiquid. Our work highlights that coordination failures and self-fulfilling beliefs under market frictions can play a large role in a crisis. Through the actions and reactions within a bank and between banks, a small shock on the solvency issue in the system can trigger the endogenous cycle of illiquidity and insolvency of banks.

**Empirical evidence.** Recent literature documents the empirical evidence on runs in the financial system. Copeland et al. (2011), Gorton and Metrick (2010, 2011a, 2011b), and Krishnamurthy et al. (2012) provide evidence on the repo run. The run on prime money market funds (Duygan-Bump et al. (2012)) and the run in the ABCP market (Kacperczyk and Schnabl (2010), Acharya and Schnabl (2010) and Covitz et al. (2012)) have also been documented vividly.

In a series of papers, Gorton and Metrick (2010, 2011a, 2011b) have argued that the “run on repo” played a key role in the collapse of the shadow banking system. But the findings by Krishnamurthy et al. (2012) do not entirely support this view. Krishnamurthy et al. (2012) find that the contraction in repo funding flows from non-bank lenders to shadow banks was small; the magnitude was relatively insignificant compared with the contraction in ABCP. Our theoretical work provides a unified framework to explain the evidence in these papers. Our model implies the importance of distinguishing two types of repo lending: non-bank to dealer repo lending (largely tri-party) and interbank repo lending between dealers (largely bilateral), and demonstrates the interplay between the interbank market run (such as the bilateral Repo run) and creditor runs (such as runs through ABCP and tri-party repo).

---

5 See Rochet and Vives (2004) and Freixas and Rochet (2008) for a comprehensive discussion on this debate.

6 The study of Kacperczyk and Schnabl (2010) implies that the use of short-term debt is not necessarily due to that investors have a short horizon and have a liquidity or preference shock, because in the commercial paper market many investors “purchase newly issued commercial paper from the same issuer once their holdings of commercial paper mature.” Short-term debt can play a pure role of monitoring (Calomiris and Kahn (1991), Diamond and Rajan (2001)).

7 Gorton and Metrick (2012) provide updated evidence that the providers of repo finance to the banking system included foreign financial institutions, domestic and offshore hedge funds, and other unregulated cash pools, besides money market funds (MMF) and securities lenders (SL) in Krishnamurthy et al. (2012).

8 According to Krishnamurthy et al. (2012), the repo run studied in Gorton and Metrick (2011b) is mainly on the repo lending between banks.
As for determinants of creditor runs, Covitz et al. (2012) document that at the program (firm) level, runs were more likely on ABCP programs with weak fundamentals. Both Gorton and Metrick (2011b) and Covitz et al. (2012) find that the probability of runs was strongly correlated with the macro-economic shocks – the ABX index, which proxies for asset fundamentals, and the LIBOR-OIS spread, which measures the interbank lending rates. Our model explains the above evidence. Based on our model, two key factors determining the likelihood of an individual-bank run are a bank’s asset fundamentals and the funding condition in the interbank market, while the funding condition is in turn determined by the aggregate risk of asset quality in the economy.

Acharya and Merrouche (2013) document evidence of precautionary liquidity-hoarding of banks during the recent crisis. They find that the liquidity demand of large settlement banks in the UK experienced a sharp increase in the period immediately following the day on which money markets froze, igniting the crisis. They further provide evidence that the liquidity hoarding was due to precautionary motives rather than counterparty risk effects, at least in the early phase of the crisis. These findings are consistent with our model.

**Related literature.** To our knowledge, our paper is the first to study and explicitly model the interplay between the interbank market run and creditor runs, which helps explain a systemic crisis.\(^9\) The rationale for the interbank market in our paper is different from that in the extant literature.

Our paper is related to the papers that use global game methods to address illiquidity risk (e.g., Morris and Shin (2004a, 2009), Rochet and Vives (2004), Goldstein and Pauzner (2005), Liu and Mello (2011), Eisenbach (2011)).\(^{10}\) Vives (2013) builds a general model to summarize the results in this literature. Our paper contributes to this literature in that we study the interplay between illiquidity risk and insolvency risk in a financial system context and analyze systemic effects that played a large role in the recent crisis. We explicitly model the interbank market, and examine the

---

\(^9\)Brunnermeier (2009) discusses various amplification mechanisms in the recent crisis, touching some elements of our paper. Using a game-theoretic approach, Liu and Mello (2012) study the amplification mechanism in the interbank market by emphasizing the role of a large lender; our model has a different mechanism. Uhlig (2010) examines a systemic bank run but does not study the role played by the interbank market and the feedback.

\(^{10}\)In a related model not using global games, He and Xiong (2012) study the inter-temporal coordination problem among creditors.
transmission of shocks across institutions through the interbank market.\textsuperscript{11} Morris and Shin (2009) build an analytical framework to separate the creditor risk in a financial institution into insolvency risk and illiquidity risk. We provide a general equilibrium treatment on Morris and Shin (2009) and endogenize some key parameters in their model.

Our paper is related to the contributions that study interbank markets (e.g., Bhattacharya and Gale (1987), Rochet and Tirole (1996), Allen and Gale (2004b), Freixas and Holthausen (2005)), and contagion through interbank claims (e.g., Allen and Gale (2000), Freixas et al. (2000), Dasgupta (2004)). This literature typically studies the shock on the liability side, e.g., the preference shocks of depositors. Contagion stems from contractual links between banks; for example, a lender bank loses deposits (and thus capital) in other banks, which causes an insolvency problem of the lender bank itself. Unlike earlier work, our paper models the shock on the asset side, and highlights contagions through the impact on illiquidity risk of financial institutions rather than the insolvency risk. Our model of the interbank market is a Walrasian economy, not a game; the actual agents (banks) are infinitesimal price-takers, not strategic players. Our theoretical result is consistent with the evidence in the case study on Northern Rock by Shin (2009) that highlights a new form of contagion in the recent crisis. Based on Shin (2009), the failure of Northern Rock was not likely because it suffered a loss of its deposits or investment in banks in the US, as Northern Rock had “virtually no subprime lending”. Instead, Shin (2009) emphasizes that Northern Rock fished from the same pool of short-term wholesale funding as did the US institutions.

Our paper is closely related to the work of Diamond and Rajan (2005) in studying aggregate liquidity and banking crises. Both papers demonstrate contagions arising from a shrinking of the pool of available aggregate liquidity and the shock being on the asset side. Our paper differs from Diamond and Rajan in several ways. First, the illiquidity risk in our model is endogenous, which stems from the (negative) shock on the asset quality. In Diamond and Rajan, there is no uncertainty...
of the asset quality; the shock is that a number of projects are delayed for exogenous reasons in generating cash flows, so the illiquidity risk is due to the need of some investors to consume early while some projects are delayed. Second, we model the two-way feedback between the interbank market run and creditor runs, highlighting the amplification effect of coordination failures and self-fulfilling beliefs. The interbank run in our model arises from precautionary liquidity-hoarding motives. Third, on the methodology side, we use global games to model creditor runs in a general equilibrium framework. This allows us to determine the unique equilibrium of a creditor run, and derive the unique interbank rate, and thus study the competitive equilibrium (laissez-faire equilibrium).

A strand of literature studies portfolio choice of banks and how banks determine their level of liquidity by taking account of the opportunity of future fire sales of other banks (e.g., Allen and Gale (2004a,b), Gorton and Huang (2004), and Acharya et al. (2009), Bolton et al. (2011), Diamond and Rajan (2011), Gale and Yorulmazer (2011)). Our paper differs from these papers in various aspects. First, our paper studies the interbank lending market rather than the asset sale market. Second, the liquidity shock of banks in our paper is endogenous, originating in asset quality. Third, we model the feedback between the interbank market run and creditor runs, and examine the spiraling and amplification effect. All papers in this literature, including ours, build on the result in Geanakoplos and Polemarchakis (1985) that when markets are incomplete, the competitive equilibrium may not be constrained efficient - a pecuniary externalities effect.

The paper is organized as follows. In Section 2, we present the model and the equilibria. In Section 3, we study the origin of crisis, contagion and amplification. Section 4 concludes.

---

12 This literature is related to Shleifer and Vishny (1992) and Allen and Gale (1994, 1998) who show “cash-in-the-market prices” at fire sales.

13 Our paper, in general, is also related to papers on the interaction between market and funding liquidity (Brunnermeier and Pedersen (2009)), optimal maturity structure choices (Brunnermeier and Oehmke (2013)), and the effect of transparency on rollover risk (Bouvard, Chaigneau and De Motta (2013)).

14 The recent work of Acharya and Skeie (2011) studies precautionary demand for liquidity of leveraged banks in inter-bank markets. The mechanism in their paper is different from ours. In theirs, precautionary hoarding of liquidity is to reduce the leverage and thus to commit to not conducting risk-shifting.
2 The model

We present the model setup first and then solve the equilibria.

2.1 Setup

We discuss banks, the interbank market, and bank runs in order.

2.1.1 Banks

The model has three dates: $T_0$, $T_1$, and $T_2$, and there is no time discount for simplicity. There are a continuum of banks with unity measure, indexed by $i \in [0,1]$. Ex ante, at $T_0$, these banks are identical. Each bank has one unit of cash (capital), which is financed by the owner of the bank (hereafter, equityholder or bankowner) as well as a continuum of short-term creditors of total measure $F$, each contributing 1 unit of cash.\(^{15}\) That is, the liability side of the balance sheet of a bank at $T_0$ includes the debt of total face value $F$ and the equity value $1 - F$, where $0 < F < 1$. We can think that each bank is a regional or sectoral bank with its own investors (creditors) base. A creditor’s reserve value (the opportunity cost) of lending is $R_0$ (per unit of cash), where $R_0 \geq 1$.

At $T_0$, a bank needs to make its investment portfolio allocation: amount of cash holdings and investment in a long-term asset. Each bank has access to a long-term risky asset (investment) with stochastic payoffs at $T_2$. The unit cost of a long-term asset at $T_0$ is 1. If a long-term asset is liquidated at $T_1$, it realizes zero liquidation value (which will be elaborated on further). Denote the investment decision of a bank at $T_0$ by $(c, 1 - c)$, where $c$ is the cash holdings and $1 - c$ is the investment in the long-term asset. The investment decision $(c, 1 - c)$ is not contractible or observable unless there is a regulation on it. A bank’s balance sheet at $T_0$ is represented by Figure 2, where $A^S$ and $A^L$ are the short-term liquid asset and the long-term illiquid asset, respectively.

\(^{15}\)The short-term debt in our model might play a role of disciplining (Calomiris and Kahn (1991), Diamond and Rajan (2001)). For example, without the threat of the short-term debtholder run, the owner of a bank can take an (off-equilibrium) action which makes the bank asset being more risky with a negative NPV.
The uncertainty on the payoff of a bank’s long-term asset will be resolved gradually, as shown in Figure 3. The uncertainty at $T_0$ is characterized by the random variable $\theta$, interpreted as *asset quality*. $\theta$ has smooth density $g(\theta)$ and cumulative distribution function $G(\theta)$ in the support $[\underline{\theta}, \overline{\theta}]$, where $-\infty \leq \underline{\theta} < \overline{\theta} \leq +\infty$. The mean of $\theta$ is $\mu$ and its standard deviation is $\sigma$. At $T_1$, the uncertainty about each individual bank’s asset quality is resolved. Specifically, bank $i$ realizes its asset quality $\theta^i$, where $\theta^i$ is independently drawn from the identical probability distribution $\theta \sim g(\theta)$. That is, banks are identical ex ante but heterogeneous at $T_1$. At $T_2$, one of the two cash flows, $\{0, X\}$, will be realized per unit of a long-term asset. The probability of realizing $X$ for an asset of quality $\theta^i$ is $\pi(\theta^i)$, where $\pi(\cdot)$ is a continuous and increasing one-to-one function, $\pi : [\underline{\theta}, \overline{\theta}] \to [\underline{\pi}, \overline{\pi}]$, with $0 \leq \underline{\pi} < \overline{\pi} \leq 1$. We also assume that $\int_{\underline{\theta}}^{\overline{\theta}} [X \cdot \pi(\theta)] g(\theta) d\theta > 1$, which means that investing in a long-term asset is profitable ex ante at $T_0$.

![Figure 2: Balance sheet of banks at $T_0$](image)

Further, we assume that the asset payoff realizations at $T_2$ across banks are correlated (for, e.g., the systemic risk of the economy as in Holmstrom and Tirole (1997)). The specific setup for the correlated asset payoffs is provided in the Appendix, where we show that the risk of the debt of a higher-quality bank cannot be reduced when it acquires some assets from lower-quality banks.

---

16 The real line is both an open and a closed set. We can write it as $[-\infty, +\infty]$. 

11
The owner of a bank gets informed, at $T_1$, of the quality of his bank’s long-term asset as well as the quality of assets of other banks (to be elaborated on further). It is realistic to assume that bankers, as insiders, have information about each other’s status. But a creditor in a bank only receives a signal at $T_1$ regarding the quality of his own bank’s long-term asset. Specifically, the signal for creditor $j$ in bank $i$ (about asset quality $\theta^i$) at $T_1$ is $\theta^{ij} = \theta^i + \delta \epsilon^j$, where $\delta > 0$ is constant, and the individual specific noise $\epsilon^j$ is distributed according to the smooth symmetric density $h(\cdot)$ with mean 0 (writing its c.d.f. $H(\cdot)$). $\epsilon^j$ is i.i.d. across its creditors in a bank, and each is independent of $\theta^i$. Similar to creditors, outsiders including a court cannot observe the asset quality of a bank at $T_1$; so the asset quality of a bank at $T_1$ is not contractible at $T_0$, as in the incomplete contract literature.

Creditors of a bank are offered demand-deposit-like contracts: if a creditor calls his loan at $T_1$, his claim is the par (face) value 1; if, instead, he decides to roll over his loan until $T_2$, the notional value of his claim is $R$, where $R$ is the gross interest rate, to be endogenized.\footnote{Without loss of generality, we normalize the interim nominal claim at $T_1$ to be 1. What matters for the model is the interest rate between $T_1$ and $T_2$, the $R$.}

**Example** For tractability, we can use the following distributions and function specifications throughout the paper. The distribution of $\theta$ is assumed to be normal. Specifically, $\theta \sim N(\mu, \sigma^2)$; that is, $g(\theta) = \frac{1}{\sigma} \phi(\frac{\theta - \mu}{\sigma})$, where $\phi(\cdot)$ stands for the p.d.f. of the standard normal distribution, and $\underline{\theta} = -\infty$ and $\overline{\theta} = +\infty$. The c.d.f of $\theta$ is thus $G(\theta) = \Phi(\frac{\theta - \mu}{\sigma})$, where $\Phi(\cdot)$ is the c.d.f. for the standard normal distribution. Further, we can assume that $\pi(\theta) = \pi + (\overline{\pi} - \pi) \Phi(\frac{\theta - \mu_\pi}{\sigma_\pi})$, where $\mu_\pi$ and $\sigma_\pi$ are parameters. If $\mu_\pi = \mu$ and $\sigma_\pi = \sigma$, it is easy to show that $\pi(\cdot)$, as a function of $\theta$, is uniformly distributed with $\pi(\theta) \sim U[\underline{\pi}, \overline{\pi}]$; that is, the probability of a bank’s realizing $X$ of its long term asset at $T_2$ perceived at $T_0$ is uniformly distributed within $[\underline{\pi}, \overline{\pi}]$. The distribution of signal noise $\epsilon^j$ is assumed to be the standard normal distribution: $\epsilon^j \sim N(0, 1)$, that is, $h(\cdot) = \phi(\cdot)$ and $H(\cdot) = \Phi(\cdot)$.

**2.1.2 Interbank market**

There is an interbank credit market open at $T_1$, where banks can borrow and lend short-term funding between each other. For instance, the interbank market can be the (bilateral) repo market.
Denote the total amount of cash available to a bank at $T_1$ by $c^T$, which includes the bank's own cash holding ($c$) and the net borrowing from the interbank market. Without loss of generality, creditors in a bank cannot observe the liquidity status ($c^T$) of the bank. This is because, as will be shown, banks trading liquidity in the interbank market and creditors making rollover decisions take place simultaneously.

Two comments are in order:

First, a bank can raise liquidity at $T_1$ either by selling some of its assets or by borrowing (against collateral) in the interbank market. There is an important difference between “borrowing/lending” and “selling/buying” (see, e.g., Acharya and Viswanathan (2011) for a discussion). Raising liquidity by selling means that transferring ownership and control rights of the asset is necessary, while borrowing (against the cash flows at $T_2$ generated by the asset as collateral) means that the asset is still operated by the borrower (i.e., the owner of the asset). In our model, to focus on studying the interbank market, we assume that the liquidation/selling value of a bank's long-term asset at $T_1$ is zero. This can be justified by the fact that bank assets can be so specific that no other banks can operate them efficiently at $T_1$ (for instance, every bank is a regional or sectoral bank). Bhattacharya and Gale (1987), Allen and Gale (1998), and others also assume that liquidation is impossible. Empirically, when Northern Rock was experiencing runs in July 2007, there had been no (large-scale) fire sales or liquidations yet around the world; the failure of Northern Rock was instead triggered by the suddenly tightening funding condition of the interbank (wholesale funding) market (see, e.g., Shin (2009)).

Second, as in Rochet and Vives (2004), we assume that the interbank market is informationally efficient, in the sense that lender banks have information about the asset quality of the borrower bank. Hence, the amount of liquidity that a bank can raise in the interbank market depends on the bank’s asset quality.

---

18 This assumption itself is realistic. In the recent crisis, for example, a big problem was that outsider investors had no clue about the balance sheet compositions and the liquidity status of banks. From the theoretical perspective, we can consider that creditors also receive noisy signals about their bank’s liquidity status. This is equivalent to creditors having another signal about the asset quality of their bank (because liquidity status is a one-to-one function of asset quality in a bank). When creditors’ private information about asset quality is precise enough, this additional piece of information does not change the model results qualitatively.
2.1.3 Bank runs

If the number of a bank’s creditors greater than $c^T$ decline to roll over their lending, the bank has to liquidate its illiquid long-term asset, and consequently it fails – a creditor run.\footnote{The liquidation value of any unit of the long-term asset is 0. The bank fails as long as the liquidation starts. In equilibrium, there are no partial liquidations.}

Following the work of Rochet and Vives (2004) and Morris and Shin (2009), we use a simplified payoff structure of the creditor run game. Specifically, as in their work, we can assume that each creditor in a bank is an institutional investor (a fund), which is run by its fund manager. A fund manager has the following compensation scheme. If the fund manager calls on the fund’s investment at $T_1$, the fund manager’s payoff is a constant $w_0$, or the face value 1 multiplied by proportion $w_0$. This can be because, as shown later, calling loans at $T_1$ makes a creditor either fully recover the face value of investment 1 or suffer a small loss. $w_0$ can also be interpreted as the fund manager’s monetary compensation with the non-pecuniary penalties deducted (e.g., his reputation losses due to early calls) as in Rochet and Vives (2004). If, instead, the fund manager holds, his payoff is the fund’s return multiplied by $\gamma$. The ratio $\frac{w_0}{\gamma}$ is called the “outside option ratio” in Morris and Shin (2009). Table 1 shows the simplified payoff structure (for a fund manager) of the creditor run game, where the bank has asset quality $\theta$ at $T_1$.

<table>
<thead>
<tr>
<th></th>
<th>Calling no greater than $c^T$ (bank survives)</th>
<th>Calling greater than $c^T$ (bank fails)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hold</td>
<td>$\left{ \begin{array}{ll} \gamma R &amp; (\text{prob } \pi(\theta)) \ 0 &amp; (\text{prob } 1 - \pi(\theta)) \end{array} \right.$</td>
<td>$0$</td>
</tr>
<tr>
<td>Call</td>
<td>$w_0$</td>
<td>$w_0$</td>
</tr>
</tbody>
</table>

Table 1: Creditor-run payoff structure

By introducing a third party, fund managers, we have a discrete-states payoff structure of the creditor-run game. This structure has the advantage of being simple and avoiding technique complications, and at the same time sufficing to capture the key feature of a creditor-run game.\footnote{We will verify that only when the long-term asset of a bank pays $X$ at $T_2$, is the interest $R$ realized. In other words, a fund manager obtains $\gamma R$ with probability $\pi(\theta)$ conditional on the bank surviving to $T_2$.}
— the strategic-complementarities payoff structure: If the proportion of creditors in a bank higher than \( c_T \) calls the loans, the optimal strategy for an individual creditor is to also ‘call’. If, however, the proportion of the creditors calling the loans is less than \( c_T \), the optimal strategy for an individual creditor is likely to also ‘hold’. In fact, when \( w_0 = 1 \) and \( \gamma = 1 \), the payoff structure is about the payoff to a bank creditor without involving a fund manager. In this case, the simplified payoff structure is a close approximation of the full continuous-states payoff structure as in Dasgupta (2004), Goldstein and Pauzner (2005), and Liu and Mello (2012). For this reason, in our paper, we normalize that \( \frac{w_0}{\gamma} = 1 \) as in Morris and Shin (2009).

2.1.4 Timeline

Without loss of generality, we assume that at \( T_2 \) the principal and interest payment to bank (existing) creditors, who are offered demand-deposit-like contracts, is senior to the repayment to counterparty banks for the interbank borrowing.\(^{21}\)

The timeline is the following:

At \( T_0 \): 1) The owner (equityholder) of a bank attracts deposits by offering a nominal (gross) interest rate \( R \). The owner has capital \( 1 - F \) and the total available capital (cash) from the potential depositors for one bank is \( F \).

2) A bank and its depositors (creditors) sign the demand-deposit-like contracts.

3) A bank makes its investment choice \((c, 1 - c)\).

At \( T_1 \): 1) The owner of a bank gets informed of the asset quality of his bank as well as the asset quality of other banks. Banks borrow and lend short-term funding in the interbank lending market. The interbank rates are determined by the market equilibrium.

A creditor (fund manager) in a bank receives a signal regarding the asset quality of his bank. Based on his signal, he decides whether to roll over his credit to the bank. All creditors make the rollover decisions simultaneously.

\(^{21}\)This assumption is purely for tractability. It is to make the cash flow pattern for each claimant simple, so that we can focus on the core of our mechanism. In fact, if interbank lenders are senior to non-bank creditors, the bank can default to a non-bank creditor at \( T_2 \) (even if the bank is liquid and thus has no defaults at \( T_1 \)), in which case the cash flow pattern for a non-bank creditor is very complicated and his participation condition (IR) is hard to make tractable although the model result does not change qualitatively.
2) If a sufficient number of creditors in a bank declines to roll over, the creditor run occurs and the bank fails.

At $T_2$: 1) If a bank survives to $T_2$, the payoff of its long-term asset is realized.

2) For a bank that has borrowed in the interbank market, its depositors, counterparty banks, and equityholder get payoffs, in order. A bank that has lent in the interbank market receives the repayment from its counterparty banks first and then pays its creditors and equityholder, in order.

Figure 4 summarizes the timeline.

$$(c, R)$$

$$(I, \theta^*, \tilde{\theta})$$

$T_0$ $T_1$ $T_2$

- (F.1-F) is financed in a bank
- A bank signs a contract with its creditors
- Banks invest
- A bankowner is informed of asset quality of his bank and other banks
- Banks borrow and lend in the interbank market
- A creditor receives signal about his bank
- All creditors in a bank make rollover decisions simultaneously
- A bank fails if a creditor run occurs
- A survival bank realizes asset payoff
- Creditors and counterparties in a bank receive payoffs in order

**Figure 4: Timeline**

### 2.2 Equilibrium at $T_1$

We conduct analysis by backward induction, from $T_1$ to $T_0$. In this subsection, for given $c$ and $R$, which are set at $T_0$, we work out the equilibrium at $T_1$.

At $T_1$, creditors in a bank need to make their rollover decisions, that is, they play a creditor-run game. We are interested in the equilibrium where every creditor uses a threshold strategy.$^{22}$ The

$^{22}$In the finance literature on applications of global games, the threshold equilibrium is the primary interest. For example, Morris and Shin (2004b, 2009) consider only threshold equilibria.
strategy is given by

\[
\theta^{ij} \rightarrow \begin{cases} 
    \text{Call} & \theta^{ij} < \theta^* \\
    \text{Hold} & \theta^{ij} \geq \theta^*
\end{cases},
\]

where \( \theta^{ij} \) is the information of creditor \( j \) in bank \( i \) and \( \theta^* \) the threshold. Note that a creditor in a bank does not have bank-specific information about his bank, so the threshold \( \theta^* \) is not bank-specific. That is, creditors in all banks use a common strategy. Also, the prior distribution of \( \theta \), the density \( g(\theta) \), is equivalent to public information about the asset quality for a creditor (see also Morris and Shin (2003)). So a creditor’s strategy \( \theta^* \) depends on public information.

We first consider the benchmark equilibrium when there is no interbank lending market, and then consider the equilibrium when there is an interbank market.

2.2.1 Benchmark equilibrium at \( T_1 \) if there is no interbank lending market

In this case, we assume that banks are in autarky and there is no interbank lending market at \( T_1 \). So, \( c^T = c \).

We solve the creditor-run game equilibrium at \( T_1 \) for given \( c \) and \( R \). We define another threshold \( \tilde{\theta}^i \), which is the equilibrium bank failure threshold for an individual bank, that is, if and only if the bank’s realized fundamental value \( \theta \) is below \( \tilde{\theta}^i \), does the bank fail at \( T_1 \). Here, we use superscript ‘\( i \)’ in notation \( \tilde{\theta}^i \) to highlight the fact that creditors in each individual bank are with ‘local thinking’ – they only consider the position of their own bank and do not necessarily have a global view of the banking system.

For a given \( \tilde{\theta}^i \), we consider the position of a creditor whose decision proxy is his fund manager. For the marginal creditor (fund manager) in a bank who receives signal \( \theta^* \), he is indifferent to holding or calling; so we have

\[
\int_{\tilde{\theta}^i}^{0} 0 \cdot h_{g}(\theta|\theta^*)d\theta + \int_{\tilde{\theta}^i}^{\gamma R} (\gamma R) \cdot \pi(\theta) \cdot h_{g}(\theta|\theta^*)d\theta = w_0,
\]

where \( h_{g}(\theta|\theta^*) \) is the posterior (conditional) density with the prior being \( g(\cdot) \). The right hand side of (1) is the payoff of calling. The left-hand side of (1) expresses the payoff for the marginal creditor (fund manager) when he decides to roll over: If \( \theta < \tilde{\theta}^i \), the bank cannot survive to \( T_2 \) and he gets
nothing, which is the first term; conditional on the bank surviving to \( T_2 \), his expected payoff is \((\gamma R) \cdot \pi(\theta)\) for a given realization of \( \theta \), the second term.

For a given \( \theta^* \), we consider the position of a bank. For a bank with fundamental value being \( \theta \), the proportion of its creditors calling is \( H(\frac{\sigma - \theta}{\delta}) \). Hence, the bank with marginal fundamental value \( \hat{\theta}^i \) has a proportion \( H(\frac{\sigma - \hat{\theta}^i}{\delta}) \) of its creditors calling. By the definition of \( \hat{\theta}^i \) and the nature of creditor runs, we have

\[
c = F \cdot H\left(\frac{\theta^* - \hat{\theta}^i}{\delta}\right).
\]

(2)

The system of equations (1) and (2) determines the creditor-run equilibrium. We have the following result.

**Lemma 1** Without an interbank market, the creditor-run equilibrium at \( T_1 \) is characterized by the pair \((\hat{\theta}^i, \theta^*)\), which solves the system of equations (1)-(2) for given \( c \) and \( R \). The creditor-run game has a unique (stable) equilibrium under some parametric values. We have the comparative statics: \( \frac{\partial \theta^*}{\partial c} < 0 \) and \( \frac{\partial \theta^*}{\partial R} < 0 \).

Proof: see Appendix.

The intuition behind the comparative statics in Lemma 1 is as follows. If a bank has more cash holdings, the bank can withstand withdrawals by more creditors and is less fragile, thereby lowering the threshold for coordination among creditors to not run. In other words, a higher \( c \) means that the chance of the accident of miscoordination among creditors at \( T_1 \) is lower; consequently, creditors are more comfortable with staying until \( T_2 \) and thus set a lower running threshold \( \theta^* \). A higher \( R \) means that creditors have a higher stake in the bank at \( T_2 \) and thus have lower incentives to run.

It is instructive to examine the creditor-run equilibrium under the limit \( \delta \rightarrow 0 \) for a given \( \sigma \). By (2), we have \( \hat{\theta}^i = \theta^* - \delta \Phi^{-1}(\frac{c}{F}) \). So we can combine (1) and (2):

\[
\int_{\hat{\theta} = \theta^* - \delta \Phi^{-1}(\frac{c}{F})}^{\theta = +\infty} (\gamma R) \cdot \pi(\theta) \cdot h_g(\theta|\theta^*)d\theta = w_0
\]

\[23\text{In a “stable” equilibrium, the best response function (of an individual player to its peers) intersects the 45° line at a slope of less than 1. It is known in the literature that even if the global game has multiple equilibria, comparative statics apply (see, e.g., Vives (2005, 2013)).}\]
Under the limit $\delta \to 0$ for a given $\sigma$, it is easy to show that the above equation can be transformed to

$$\frac{c}{F} \cdot \frac{R \cdot \pi(\theta^*)}{R \cdot \pi(\theta^*)} = \frac{w_0}{\gamma}.$$  \hspace{1cm} (3)

(3) becomes very intuitive: the term $\frac{c}{F}$ measures coordination (illiquidity) risk while $R \cdot \pi(\theta^*)$ corresponds to fundamental (insolvency) risk. The uniqueness of the solution of $\theta^*$ is straightforward (under proper parametric values of $c$, $F$ and $R$). The intuition behind the derivation of (3) is the following. Under the limit $\delta \to 0$, fundamental uncertainty disappears, i.e., $\theta \to \theta^*$. However, strategic uncertainty does not. From the marginal creditor’s perspective, the proportion of creditors calling loans is uniformly distributed within $[0, 1]$. So the probability that the proportion of creditors calling loans less than $\frac{c}{F}$ is exactly $\frac{c}{F}$. From (3), $\theta^*$ is clearly decreasing in $c$ and $R$, which confirms Lemma 1. Because $\delta \to 0$, we also have that $\hat{\theta}^i = \theta^*$ and that $\hat{\theta}^i$ is a decreasing function of $c$. Default risk of debt in a financial institution can be decomposed into two components: illiquidity risk and insolvency risk. (3) clearly shows that liquidity holdings, $c$, in our model affect *illiquidity risk* (or the bank survival rate at $T_1$), rather than *insolvency risk* of the debt. When $c$ is low, even if the bank’s fundamental value $\theta$ is sound, the bank may fail at $T_1$ and thus its debt defaults because the bank is illiquid, rather than insolvent. This result crucially differentiates our model from the existing insights of Allen and Gale (2004) and Dasgupta (2004), where the failure of the debtor bank impacts the *capital* and thus *solvency* of the creditor bank. In fact, as shown later, in our model the liquid asset, $c$, has no impact on the bank’s solvency or the riskiness of its debt at $T_2$. Whether the bank defaults or not at $T_2$ is completely determined by whether the bank’s long-term asset pays $0$ or $X$.

### 2.2.2 Equilibrium at $T_1$ if there is an interbank lending market

If there is no interbank lending market at $T_1$, the cash holdings of a bank are either not enough or wasted at $T_1$. Now we consider that there is an interbank lending market open at $T_1$, so banks can borrow and lend funding among each other.

The equilibrium at $T_1$ is characterized by the triplet $(\theta^*, \hat{\theta}, I)$ for given $c$ and $R$, where $\theta^*$ is the calling threshold of a creditor in a bank, $\hat{\theta}$ denotes the marginal bank in the system that survives at
$T_1$, and $I$ is the risk-adjusted gross interbank market rate. The equilibrium comprises two elements: the creditor run equilibrium for an individual bank and the interbank market equilibrium.

**The creditor run equilibrium for an individual bank** This equilibrium is given by the system of equations (4) and (5):

$$
\int_0^{\hat{\theta}^i} \left( 0 \cdot h_g(\theta|\theta^*) d\theta + \int_0^{\hat{\theta}^i} (\gamma R) \cdot \pi(\theta) \cdot h_g(\theta|\theta^*) d\theta \right) = w_0
$$

$$\hat{\theta}^i = \max(\hat{\theta}, \theta^T)$$

(4)-(5) parallels (1)-(2). The difference is that with an interbank market, an individual bank can borrow liquidity from it, so we have (5), in comparison with (2). In fact, if the borrowing is impossible (i.e., $I = +\infty$), (5) is identical to (2). Importantly, under the competitive interbank market, every bank is a price-taker and takes the interbank rate $I$ as given. The liquidity status of the bank depends on its own liquidity holdings ($c$) and the short-term funding it can raise from the interbank market. (5) gives the condition under which the bank will fail for a given interbank rate $I$.

We explain (5). When the bank is of asset quality $\theta$, a number of $F \cdot H(\frac{\theta^* - \theta}{\delta})$ creditors calls on it at $T_1$, and the remaining creditors with a number of $F \cdot \left(1 - H(\frac{\theta^* - \theta}{\delta})\right)$ stay until $T_2$. Hence, the expected payoff that will accrue to the bank's equityholder, after paying its staying creditors, is $\left[(1 - c)X - R \cdot F \cdot \left(1 - H(\frac{\theta^* - \theta}{\delta})\right)\right] \pi(\theta)$ at $T_2$. Figure 5 shows the balance sheet position for the bank at $T_1$. So the bank can borrow a maximum amount of $\frac{\left[(1 - c)X - R \cdot F \cdot \left(1 - H(\frac{\theta^* - \theta}{\delta})\right)\right] \pi(\theta)}{F \cdot H(\frac{\theta^* - \theta}{\delta})}$ in the interbank market at $T_1$. Because its required liquidity is $F \cdot H(\frac{\theta^* - \theta}{\delta})$, we can obtain the bank failure threshold $\theta^T$. $\theta^T$ might be lower than $\hat{\theta}^i$.\(^{24}\) In which case we have the corner solution $\hat{\theta}^i = \hat{\theta}$.

---

\(^{24}\)Rigorously, this means that even for $\theta = \hat{\theta}$, strict inequality in (5a) holds, so no $\theta$ can make (5a) have equality.
It is important to emphasize that a higher interbank rate leads to greater downside risk to bank creditors, but no upside risk. Concretely, creditors in a bank suffer if their bank cannot borrow from the interbank market but cannot gain if their bank earns profits in the interbank lending (i.e., all the profits accrue to the bank equityholder). Recall that the asset payoff realizations at $T_2$ across banks are correlated. This asymmetry in payoffs coupled with imperfect information about the type of a bank leads to creditors reacting to a higher interbank rate by running more often.

We can solve the equation system to obtain the solution pair $(\theta^*, \tilde{\theta}^i)$ for given $c$, $R$ and $I$. In conducting the comparative statics, we have Lemma 2.

**Lemma 2** With the interbank market, the creditor run equilibrium for an individual bank is characterized by the pair $(\theta^*, \tilde{\theta}^i)$, which solves the system of equations (4)-(5). The creditor-run game has a unique (stable) equilibrium under some parametric values. An increase in $I$ leads to $\theta^*$ increasing along an upward spiral in that $\frac{\partial \theta^i}{\partial \theta^*} \geq 0$ (in (5)), $\frac{\partial \theta^*}{\partial \theta} > 0$ (in (4)), and $\frac{\partial \tilde{\theta}^i}{\partial \theta^*} \geq 0$ (in (5)), with strict inequalities holding for non-corner solutions in (5).

Proof: see Appendix.

The intuition behind the comparative statics in Lemma 2 is as follows. As in Lemma 1, the liquidity status of a bank impacts the coordination risk among its creditors in debt rollover decisions. *Ceteris paribus*, a rise in the funding cost in the interbank market means a deterioration
of the liquidity status of a bank. A small rise in the interbank rate can significantly increase the
coordination risk, and thus creditors rush for the exit. Specifically, an increase in the funding cost
in the interbank market makes the bank’s failure more likely \( \frac{\partial g^i}{\partial \theta} > 0 \) in (5)), which in turn triggers
a more conservative behavior of creditors \( \frac{\partial g^*}{\partial \theta} > 0 \) in (4)), which causes the bank’s failure to be
even more likely \( \frac{\partial g^*}{\partial \theta} > 0 \) in (5)), and so on. Therefore, a small increase in \( I \) can result in a big
rise in \( \theta^* \).

From Lemma 2, whether a bank actually fails depends on its fundamental value (its realized
\( \theta \)) and the interbank rate (\( I \)). This is consistent with the evidence in Gorton and Metrick (2011b)
and Covitz et al. (2012).

**The interbank market equilibrium**  Because there are a continuum of banks in the system
and their asset quality is i.i.d., the marginal bank in the system that survives at \( T_1 \) is

\[
\hat{\theta} = \hat{\theta}^i
\]  

(6)

So, banks indexed \( \theta \geq \hat{\theta} \) survive and the others fail. Hence, the aggregate liquidity that survival
banks possess is \( \int_{\hat{\theta}}^{\infty} c d\theta \). For a bank with asset quality \( \theta \) to survive, its required liquidity is
\( c^T(\theta) = F \cdot H\left(\frac{\theta^* - \theta}{\delta}\right) \). So the market clearing commands that the following condition be true:

\[
\begin{cases}
    \int_{\hat{\theta}}^{\infty} c g(\theta) d\theta = \int_{\hat{\theta}}^{\infty} F \cdot H\left(\frac{\theta^* - \theta}{\delta}\right) g(\theta) d\theta & \text{if } \hat{\theta} > \theta \\
    \int_{\theta}^{\infty} c g(\theta) d\theta \geq \int_{\hat{\theta}}^{\infty} F \cdot H\left(\frac{\theta^* - \theta}{\delta}\right) g(\theta) d\theta & \text{if } \hat{\theta} = \theta
\end{cases}
\]  

(7)

In (7), if \( \hat{\theta} \) is not the corner solution (i.e., \( \hat{\theta} > \theta \)), the aggregate amount of possessed liquidity must
be equal to the aggregate amount of required liquidity. If \( \hat{\theta} \) is the corner solution (i.e., \( \hat{\theta} = \theta \)), the
aggregate possessed liquidity can be excess.\(^{25}\)

To complete the above analysis, we need to show that banks indexed \( \theta < \hat{\theta} \) do not participate
in the interbank market, i.e., neither borrow nor lend. Clearly, they don’t borrow as they cannot

---

\(^{25}\)Eq. (7) is equivalent to the market clearing condition in terms of the net position (demand or supply) of a bank
in the interbank market. The net position of a bank of asset quality \( \theta \) is \( c^T(\theta) - c = F \cdot H\left(\frac{\theta^* - \theta}{\delta}\right) - c \) (when the
aggregate possessed liquidity is not excess). So, by the aggregate net positions across all survival banks being 0, we
have the same result as (7).
afford.\textsuperscript{26} We also assume that a bank that goes to bankruptcy at $T_1$ has no ability at $T_2$ to recover its investment if it lends in the interbank market, so it does not lend in the first place.\textsuperscript{27}

We can summarize the equilibrium at $T_1$ by Lemma 3.

\textbf{Lemma 3} With an interbank market, the equilibrium at $T_1$ is characterized by the triplet $(\hat{\theta}^*, \bar{\theta}, I)$, which solves the system of equations (4)-(5), (6) and (7) for given $c$ and $R$.

Proof: see Appendix.

In Lemma 3, there may exist more than one interbank market rate $I$ that can clear the market for some $c$. In fact, when $c$ is not very high, the marginal bank, $\bar{\theta}$, satisfies $\bar{\theta} > \hat{\theta}$. The interbank rate is uniquely determined by marginal bank $\hat{\theta}$. The equilibrium rate in this case is equal to the marginal bank’s equity value divided by its funding shortage. When $c$ is high enough, the marginal bank is bank $\bar{\theta}$, in which case the equilibrium interbank rate can be any rate between 1 and the rate that marginal bank $\bar{\theta}$ can afford. When $c$ is further higher, the interbank rate must be 1. See Appendix.

\textbf{2.3 Equilibrium at $T_0$}

In this subsection, we study the equilibrium at $T_0$, in doing so we will endogenize $c$ and $R$. In particular, after solving the ex ante problem, we are able to draw conclusions on the efficiency (welfare).

We consider both the constrained second best equilibrium and the competitive equilibrium. Since banks are identical at $T_0$, to reduce notational clutter, we drop the bank index superscript $i$ in the following analysis, unless otherwise specified.

\textbf{2.3.1 Constrained second best equilibrium}

We state the equilibrium concept.

\textsuperscript{26}The borrowed liquidity and its own liquidity of such a bank is not enough to cover the demand of its creditors. The bank run will occur and its long-term asset will be destroyed, so no lenders are willing to lend liquidity to it in the first place.

\textsuperscript{27}When a decision makes no difference to its equity value, a bank maximizes the value of its debtholders.
Constrained second best equilibrium A constrained second best equilibrium consists of the following three elements:

(i) For given \((c, R)\) set at \(T_0\), Lemma 3 determines equilibrium outcome \((\theta^*, \bar{\theta}, I)\) at \(T_1\).

(ii) A creditor demands an interest rate \(R\) at \(T_0\) such that given \((c, R)\) and thereby subsequent equilibrium outcome \((\theta^*, \bar{\theta}, I)\), the creditor breaks even ex ante at \(T_0\).

(iii) Knowing the response of \((R, \theta^*, \bar{\theta}, I)\) to \(c\), the social planner chooses an optimal \(c\) at \(T_0\) to maximize the aggregate expected value of all banks in the economy.

We first study element (ii). We can work out the \textit{ex post} payoff to creditors and the equityholder (of equilibrium outcome) in the creditor-run game. The \textit{ex post} payoff to the equityholder in a bank of quality \(\theta\) at \(T_1\) is calculated as follows. If the bank fails (i.e., \(\theta < \bar{\theta}\)) at \(T_1\), its equityholder gets nothing. If the bank survives (i.e., \(\theta \geq \bar{\theta}\)) at \(T_1\), the equityholder’s payoff includes his claim from the long-term asset as well as his position in the interbank market, which is

\[
\left[ c - F \cdot H \left( \frac{\theta^* - \theta}{\delta} \right) \right] I + \left[ (1 - c) X - R \cdot F \cdot \left( 1 - H \left( \frac{\theta^* - \theta}{\delta} \right) \right) \right] \pi(\theta) \tag{8}
\]

Gain or loss in interbank market
Payoff in risky investment

In the above, the first term, which can be positive (i.e., for lending) or negative (i.e., for borrowing), is the bank’s gain or loss in the interbank market, and the second term is the expected payoff of its long-term asset net of the claim of its staying creditors.\(^{28}\)

Similarly, we can work out the \textit{ex post} payoff to a creditor in the creditor-run game. If a bank with fundamental \(\theta\) fails at \(T_1\), the bank’s total asset is the cash \(c\), which is divided by the creditors who call. Hence, a creditor who calls obtains \(\frac{c}{F \cdot H(\frac{\theta - \theta}{\delta})}\) by recalling that the proportion of creditors calling is \(H(\frac{\theta - \theta}{\delta})\), and a creditor who does not call obtains 0. If a bank survives to \(T_2\), a number of \(F \cdot H(\frac{\theta - \theta}{\delta})\) creditors has called at \(T_1\), each of whom obtains face value 1, while each staying creditor’s expected payoff is \(\pi(\theta)R\) at \(T_2\).\(^{29}\)

\(^{28}\)When an interbank market exists, no banks have residual cash at \(T_1\) (to be carried forward to \(T_2\)). A lender bank with surplus liquidity lends out all it liquidity in the interbank market and hence has no residual cash. A borrower bank uses up all its own liquidity plus the borrowed liquidity to repay its creditors who call. Also, we will show that in either the competitive equilibrium or the constrained second best equilibrium, the optimal cash holdings decided at \(T_0\) cannot be such that the liquidity supply in the interbank market at \(T_1\) is excess (i.e., beyond the maximum demand in the system).

\(^{29}\)Staying creditors make their claim on the long-term risky asset of \(1 - c\) units. We will show that in equilibrium \((1 - c)X > FR\). So a staying creditor obtains \(R\) if and only if the long-term asset realizes its high state payoff \(X\).
Thus, we can obtain the expected payoff to a creditor and thereby his ex ante participation condition at $T_0$. That is,

$$ R_0 = \int_\tilde{\theta} \int_{-\infty}^{\theta^*} \frac{c}{F \cdot H(\frac{\theta^j - \theta^i}{\tilde{\theta}})} \cdot h(\theta^{ij}|\theta^i) d\theta^{ij} + \int_{\theta^*}^{+\infty} 0 \cdot h(\theta^{ij}|\theta^i) d\theta^{ij} g(\theta^i)d\theta^i $$

$$ + \int_\tilde{\theta} \int_{-\infty}^{\theta^*} 1 \cdot h(\theta^{ij}|\theta^i) d\theta^{ij} + \int_{\theta^*}^{+\infty} \left( R \cdot \pi(\theta^i) \right) \cdot h(\theta^{ij}|\theta^i) d\theta^{ij} g(\theta^i)d\theta^i. \tag{9} $$

(9) gives the position for creditor $j$ in bank $i$. Ex ante, at $T_0$, this creditor faces two levels of uncertainty: the quality of his bank and the signal that he will receive. The density $g(\theta^j)$ is about the first level of uncertainty and the conditional density $h(\theta^{ij}|\theta^i)$ is about the second level of uncertainty. The payoff in each scenario has been explained in the last paragraph.

Three remarks regarding the participation condition are in order. First, the four terms in (9) correspond to the four elements in Table 1, respectively. The difference in payoffs between Table 1 and (9) is minor when $w_0 = 1$ and $\gamma = 1$. That is, without involving a fund manager, the simplified payoff structure of bank runs is a close approximation of the full payoff structure. From (9), we see that calling loans at $T_1$ makes a creditor either fully recover the face value of investment 1 (in case of bank survival) or suffer a small loss (in case of bank failure). As in Rochet and Vives (2004) and Morris and Shin (2009), we have assumed that a fund manager obtains a constant payoff, $w_0$, in these two cases.

Second, the participation condition (9) is in terms of the gross payoff to a creditor. This can be interpreted as the compensation to the fund manager being negligible relative to the total payoff to the creditor (i.e., both $w_0$ and $\gamma$ are small and $\frac{w_0}{\gamma} = 1$).

Third, we can write the participation condition in terms of the net payoff to a creditor. That is, a creditor’s payoff is the payoff from his investment net of the compensation to his fund manager. In this case, the payoffs for the four scenarios in (9) are replaced by $\frac{c}{F \cdot H(\frac{\theta^j - \theta^i}{\tilde{\theta}})} - w_0$, 0, 1 - $w_0$, and $(1 - \gamma)(R \cdot \pi(\theta^i))$, respectively. This alternative way of the participation condition does not change the model results qualitatively.
Equation (9) can be simplified and rewritten as

\[
R_0 = \int_{\theta_1}^{\theta_2} \left( \frac{c}{F} \right) g(\theta) d\theta + \int_{\theta_3}^{\theta_4} \left[ \frac{H(\frac{\theta^* - \theta}{\delta}) \cdot 1 + \left( 1 - H(\frac{\theta^* - \theta}{\delta}) \right) \cdot (R \cdot \pi(\theta))}{R} \right] g(\theta) d\theta. \quad (9')
\]

(9’) is intuitive. Conditional on a bank failing, the expected payoff to a creditor is \( \frac{c}{F} \). This is because that \( c \) will be distributed among the calling creditors while ex ante all creditors have an equal chance to end up as a calling creditor; therefore, ex ante, this is equivalent to that \( c \) is distributed equally among a number of \( F \) creditors. Conditional on the bank surviving, with probability \( H(\frac{\theta^* - \theta}{\delta}) \), a creditor receives a bad signal and thus calls, in which case his payoff is 1; with probability \( 1 - H(\frac{\theta^* - \theta}{\delta}) \), he receives a good signal and thus stays, in which case his expected payoff is \( R \cdot \pi(\theta) \).

For cleanness, we might explicitly add another constraint:

\[
FR < (1 - c)X. \quad (10)
\]

Constraint (10) gives a sufficient condition to guarantee that creditors are repaid with \( R \) (no default) if and only if the long-term asset realizes its high state cash flow \( X \) at \( T_2 \). This condition, however, is not necessary in general when the optimization problem, to be shown shortly, is taken into account. That is, it is not optimal in equilibrium to choose too high a \( c \).

Lemma 4 summarizes the equilibrium for a given \( c \).

**Lemma 4** For a given \( c \), the equilibrium is characterized by the vector \((R, \hat{\theta}, \theta^*, I)\), which solves the system of equations (4)-(5), (6), (7) and (9’), and satisfies (10).

Proof: see Appendix.

Now we study the decision of the social planner at \( T_0 \), element (iii) of the constrained second best equilibrium. The social planner’s objective is to maximize the total social surplus. The social planner’s problem is

\[
\begin{align*}
\max_c & \quad \int_{\theta_1}^{\theta_2} c g(\theta) d\theta + \int_{\theta_3}^{\theta_4} [c + (1 - c)(X \cdot \pi(\theta))] g(\theta) d\theta \\
\text{s.t.} & \quad (4)-(5), (6), (7), (9') \text{ and } (10)
\end{align*}
\]

(Program 1)
In Program 1, the objective function is to maximize the aggregate value of all banks in the economy, including the failure banks at $T_1$ (the first term) and survival banks at $T_2$ (the second term). This aggregate value, in the end, is divided between the equityholders and the creditors in the economy. In fact, the aggregate value in the objective function is exactly equal to the sum of the equityholder’s payoff across banks in (8) plus the sum of debtholders’ payoffs across banks on RHS of (9'). Note that the gains and losses in the interbank market across banks in (8) cancel out.\footnote{Program 1 is equivalent to maximizing the aggregate equity value. The equivalence is because creditors in a bank, in total, claim a \textit{constant residual} value, $FR_0$.}

Program 1 gives the constrained second best equilibrium. In this equilibrium, the social planner decides the optimal $c$ by taking account of the incentives of the private sector. Creditors make their rollover decision based on their private information ((4) and (5)). The interbank lending market at $T_1$ operates completely under the market force, without government intervention ((6) and (7)). Creditors are rational and demand an interest rate based on rational expectations ((9')).

In solving Program 1, we can think that there are two steps. First, for a given $c$, we obtain each of $R$, $\theta^*$ and $\hat{\theta}$ as a function of $c$ by Lemma 4. In particular, we obtain function $\hat{\theta}(c)$. Second, by plugging function $\hat{\theta}(c)$ into the objective function of Program 1, we solve for the optimal $c$. Proposition 1 summarizes the result.

**Proposition 1** The constrained second best equilibrium is characterized by the vector $(c, R, \hat{\theta}, \theta^*, I)$, which solves Program 1.

Proof: see Appendix.

We explain the intuition behind the optimal $c$ in Proposition 1. A higher $c$ results in more banks surviving at $T_1$ (i.e., a lower $\hat{\theta}$), but also less investment in long-term projects in the economy. The tradeoff leads to an optimal liquidity ratio at $T_0$. Specifically, denote the aggregate bank value by $V$ in the objective function in Program 1. The first order derivative of $V$ is

$$\frac{\partial V}{\partial c} = \left\{(-\frac{\partial \hat{\theta}}{\partial c}) \cdot \left[(1 - c)(X \cdot \pi(\hat{\theta}))g(\hat{\theta})\right] \right\} - \left[\int_{\hat{\theta}}^{\theta^*} (X \cdot \pi(\theta))g(\theta)d\theta - 1 \right].$$

\footnotesize
\[\text{more banks survive ex post} \quad \text{higher return of banks ex ante}\]

\normalsize
The deadweight loss when a bank of quality \( \theta \) fails at \( T_1 \) is \((1 - c)(X \cdot \pi(\theta))\), so the gain from making more banks survive in the economy by holding one more unit of cash at \( T_0 \) is \(-\frac{\partial g(\hat{\theta})}{\partial \hat{c}}\). On the other hand, storing cash for banks means that valuable investment opportunities are wasted in the economy, the loss being \( \int_{\hat{\theta}}^{\bar{\theta}} (X \cdot \pi(\theta)) g(\theta) d\theta - 1 \). The tradeoff leads to an optimal level of cash holdings for banks at \( T_0 \).

2.3.2 Competitive equilibrium (laissez-faire equilibrium)

In the previous subsection, a bank’s ex ante cash holdings are determined by the social planner. In this subsection, we study the competitive market equilibrium: banks decide their ex ante liquidity holdings based on their rational choice (individual rationality).\(^{31}\)

Lemma 4 shows that for given ex ante cash holdings \( c \), the market force determines the equilibrium outcome \((R, \hat{\theta}, \theta^*, I)\) subsequently. Now we ask: if an individual bank takes the prices \( \{R, I\} \) and creditors’ response \( \{\theta^*\} \) given, how much liquidity it is willing to store in the first place.

Formally, we have the following equilibrium concept.

**Competitive equilibrium** A competitive equilibrium consists of the following two elements:

(i) Suppose all banks in the system choose cash holdings at \( T_0 \) as \( c \). Lemma 4 determines equilibrium outcome \((R, \hat{\theta}, \theta^*, I)\).

(ii) Taking market prices \( \{R, I\} \) and creditors’ strategy at \( T_1, \theta^* \), as given and fixed, an individual bank chooses its optimal cash holdings as being \( c \).

We turn to element (ii). An individual bank’s ex ante optimization problem in storing liquidity is

\[
c = \arg\max_{c^i} \int_{\hat{\theta}(c^i)}^{\bar{\theta}} \left\{ \left[ c^i - F \cdot H\left( \frac{\theta^* - \theta}{\delta} \right) \right] I + \left[ \frac{(1 - c^i)X - R \cdot F \cdot \left( 1 - H\left( \frac{\theta^* - \theta}{\delta} \right) \right)}{I} \right] \pi(\theta) \right\} g(\theta) d\theta
\]

where \( \hat{\theta}(c^i) = \max(\theta, \theta^T(c^i)) \), and \( \theta^T(c^i) \) solves

\[
\left[ \frac{(1 - c^i)X - R \cdot F \cdot \left( 1 - H\left( \frac{\theta^* - \theta^T}{\delta} \right) \right)}{I} \right] \pi(\theta^T) + c^i = F \cdot H\left( \frac{\theta^* - \theta^T}{\delta} \right)
\]

\(^{31}\) Note that an individual bank’s portfolio choice \((c, 1 - c)\) is not observable or contractible.
In the above, \( c^i \) denotes the cash holding choice for an individual bank. In the objective function of (11), a bank’s aim is to maximize its equity value, shown in (8). The key to understanding the optimization problem is the liquidity budget constraint, (11a). When the interbank market exists, a bank rationally anticipates that it can borrow funding in the interbank market, on top of its own liquidity. Importantly, an individual bank takes the interbank rate \( I \) as given. Thus, when a bank stores liquidity \( c^i \), it anticipates that it survives at \( T_1 \) if and only if its realized \( \theta \) satisfies \( \theta \geq \hat{\theta}^i(c^i) \), where \( \hat{\theta}^i(c^i) \) is defined in (11).

It is worth noting that \( \hat{\theta}^i(c^i) \) and \( \hat{\theta} \) have different meanings. \( \hat{\theta} \) is the general equilibrium outcome, while \( \hat{\theta}^i(c^i) \) is the survival threshold in the partial equilibrium that an individual bank can influence by changing \( c^i \) while taking the interbank rate \( I \) as given.

The competitive equilibrium means that the liquidity holding decisions of banks need to be incentive compatible. That is, there is a fixed point problem: \( c \to (R, \hat{\theta}, \theta^*, I) \to c \). We have the following result.

**Proposition 2** The competitive equilibrium is characterized by the vector \((c, R, \hat{\theta}, \theta^*, I)\), which solves the system of equations (4)-(5), (6), (7), (9’) and (11), and satisfies (10). When \( F \leq F \), where \( F \) is a cutoff, the competitive equilibrium exists and is unique. When \( F > F \), the competitive equilibrium does not exist.

The competitive equilibrium has the following properties:

1) The level of cash holdings \( c \) is such that it exactly achieves the ex post efficiency (i.e., \( \hat{\theta} = \theta \)). That is, no banks are expected to fail at \( T_1 \).

2) The equilibrium interbank rate is \( I = \int_{\hat{\theta}}^{\bar{\theta}} [X \cdot \pi(\theta)] g(\theta) d\theta \).

Proof: see Appendix.

Proposition 2 states that if the competitive equilibrium exists, it must correspond to a corner solution to the system of equations. We explain the intuition behind Proposition 2. Denote the equity value in the objective function of (11) by \( V_E \). The first order derivative on \( V_E \) is

\[
\frac{\partial V_E}{\partial c^i} = \int_{\hat{\theta}^i(c^i)}^{\bar{\theta}} [I - X \cdot \pi(\theta)] g(\theta) d\theta.
\]
If \( \hat{\theta}^i(c^i) \equiv \bar{\theta} \) is not true, we can find that the optimum \( c^i \) is either 0 or 1. That is, an individual bank prefers to either hold all cash or invest all cash in its long-term asset, which is also the result in Diamond and Rajan (2005). The driving force behind these extreme decisions is that an individual bank takes \( I \) as given and being constant, with the outcome of the “constant returns to scale” effect. In this case, the competitive equilibrium does not exist because the fixed point problem of \( c \rightarrow (R, \hat{\theta}, \theta^*, I) \rightarrow c \) does not have a solution. However, the competitive equilibrium exists and is unique when the following two conditions are satisfied: i) \( I = \int_0^\pi [X \cdot \pi(\theta)] g(\theta) d\theta \) and ii) \( \hat{\theta}^i(c^i) \equiv \bar{\theta} \). The reason is the following. These two conditions together imply that \( \frac{\partial V_E}{\partial c_i} \equiv 0 \), that is, an individual bank can choose any \( c \) as its optimum cash holdings, including the one that can achieve the ex post efficiency (i.e., \( \hat{\theta} = \bar{\theta} \)) as in Lemma 3. In turn, given this level of cash holdings, any rate between 1 and \( I(\theta) \) (where \( I(\theta) \) is the rate that bank \( \theta \) can afford) supports the equilibrium by Lemma 3, while the interbank rate given by conditions i) and ii) belongs to this region. Therefore, conditions i) and ii) guarantee the existence and the uniqueness of equilibrium. When \( F \) is not too high, the above two conditions are simultaneously satisfied.

2.3.3 Comparison between the second best equilibrium and the competitive equilibrium

In comparing the two equilibria at \( T_0 \), we have the following result:

**Proposition 3** The constrained second best, in general, cannot be implemented by the competitive equilibrium. There is an over-storage of liquidity (\( c \)) in the competitive equilibrium relative to the second best.

Proof: see Appendix.

As shown in Proposition 2, the competitive equilibrium achieves the ex post efficiency. That is, the level of cash holding \( c \) is such that all banks can survive at \( T_1 \). However, the second best equilibrium trades off the ex ante efficiency (i.e., a higher expected return of long-term investment) and the ex post efficiency (i.e., a high survival rate of banks). In general, the second best equilibrium commands that the ex post efficiency needs to be partially sacrificed. That is, the optimal cash holdings should be such that not all banks are saved at \( T_1 \). In other words, the cash holdings in the second best should be lower than in the competitive equilibrium.
Proposition 3 may shed light on the phenomenon of the financial system being “awash with liquidity” prior to the recent crisis (see, e.g., Brunnermeier et al. (2009), Shin (2010)), which quickly turned into “liquidity crunch” during the crisis (after an adverse shock hit). We discuss the intuition for why the competitive equilibrium is not constrained efficient. With an interbank market, an individual bank trades off two investment opportunities ex ante at $T_0$: investing in its long-term asset or saving cash to make interbank lending later. We can show that in the constrained efficient equilibrium, the return to the second investment (i.e., the interbank rate) is higher than the return to the first investment. So, if there are no regulations, this equilibrium cannot be supported: every bank tends to store more liquidity and invests less in long-term assets, resulting in the over-storage of liquidity in the system. Intuitively, there are two forces determining the interbank rate $I$. The first is the force akin to the ‘fire sales effect’. This means that a small amount of liquidity, $F \cdot H(\theta - \theta_0) - c$, which can be much lower than the initial investment 1, can save a bank and thus the bank is willing to give up a large portion of its value at $T_2$ for borrowing the liquidity. This force determines that the interbank rate can be very high. The second is the ‘debt overhang effect’. When a bank in liquidity shortage is saved, not only its equityholder but also its creditors benefit, which is the social value of liquidity supply in the interbank market. However, only the part of value for the equityholder is internalized into the market price (i.e., interbank rate). In other words, there is positive externality in supplying liquidity in the interbank market and the market price does not reflect it. This force will push down the interbank rate. When the first force dominates the second force, there is an over-investment in liquidity at $T_0$ in the competitive equilibrium.

3 Crisis, contagion, and amplification

We analyze the main implications of our model in this section. We use our framework to study the origin of crisis, contagion and amplification.

The creditor run and the interbank market run Before proceeding to the analysis, we derive further results about the equilibrium at $T_1$. As this section is to study the amplification effect under a shock, we focus on studying the interior solution of the equilibrium at $T_1$. In fact, a shock on the state of nature at $T_1$ will lead to the interior solution of equilibrium even if the original equilibrium without the shock is the corner solution under the competitive equilibrium.
The equilibrium at $T_1$ contains two run equilibria: the creditor run equilibrium and the interbank market run equilibrium. We analyze them one by one.

The creditor run equilibrium for an individual bank is given by the system of equations (4)-(5). We have explained it in detail earlier. For ease of exposition, here we reiterate it for the case with the non-corner solution:

\[
\begin{align*}
Z_b^i & = h_g(\theta) \cdot R \cdot h_g(\theta) d\theta + \frac{\nu_0}{\gamma} \\
& = \left[ (1 - c)X - R \cdot F \cdot \left( 1 - H\left( \frac{\theta^* - \tilde{\theta}^i}{\delta} \right) \right) \right] \pi(\tilde{\theta}) + c = F \cdot H\left( \frac{\theta^* - \tilde{\theta}^i}{\delta} \right)
\end{align*}
\]

(12a) and (12b) correspond to (4) and (5), respectively. (12a)-(12b) results in a unique $\theta^*$ for a given $I$. Also, an increase in $I$ leads to $\theta^*$ rising along an upward spiral in that $\frac{\partial \tilde{\theta}^i}{\partial \theta} > 0$ (in (12b)), $\frac{\partial \theta^*}{\partial \theta} > 0$ (in (12a)), and $\frac{\partial \theta^*}{\partial I} > 0$ (in (12b)).

We focus on explaining the “interbank market run”. The “interbank market run” equilibrium is given by the system of equations (13a)-(13b):

\[
\begin{align*}
\int_{\tilde{\theta}}^{\theta} c \cdot g(\theta; \mu)d\theta & = \int_{\tilde{\theta}}^{\theta} F \cdot H\left( \frac{\theta^* - \theta}{\delta} \right) g(\theta; \mu)d\theta \quad (13a) \\
I & = \left[ (1 - c)X - R \cdot F \cdot \left( 1 - H\left( \frac{\theta^* - \tilde{\theta}}{\delta} \right) \right) \right] \pi(\tilde{\theta}) + c = F \cdot H\left( \frac{\theta^* - \tilde{\theta}}{\delta} \right) \quad (13b)
\end{align*}
\]

(13a) is from (7), and (13b) is from (6) and (5). (13a)-(13b) results in a unique $I$ for a given $\theta^*$. Intuitively, each bank responds to creditors’ strategy $\theta^*$ and chooses its own liquidity hoarding $F \cdot H\left( \frac{\theta^* - \tilde{\theta}}{\delta} \right)$. The demand and supply forces in the interbank market determine the unique interbank rate $I$. When $\theta^*$ is high, the interbank market suffers a “run” by banks because banks are less willing to lend.

Concretely, we can think that the interbank market run determines the interbank rate in two steps. First, the demand and supply forces determine the marginal bank, that is, for a given $\theta^*$, $\tilde{\theta}$ is uniquely determined in (13a). Second, the marginal bank determines the equilibrium interbank rate, that is, for given $\tilde{\theta}$ (and $\theta^*$), $I$ is uniquely determined in (13b). We explain the intuition. Let us consider the position of the marginal bank $\tilde{\theta}$: if it does not borrow from the interbank market, it fails and consequently its equityholder gets nothing; if it borrows an amount
\( c^T(\hat{\theta}) - c = F \cdot H(\frac{\theta^* - \bar{\theta}}{\bar{\sigma}}) - c \), the difference between its required liquidity and its own liquidity, the expected payoff of its equityholder is 

\[
\left(1 - c\right)X - R \cdot F \cdot \left(1 - H\left(\frac{\theta^* - \bar{\theta}}{\bar{\sigma}}\right)\right) \pi(\hat{\theta}).
\]

Hence, the maximum risk-adjusted interbank rate that the marginal bank is willing to and is able to pay is

\[
\frac{\left(1 - c\right)X - R \cdot F \cdot \left(1 - H\left(\frac{\theta^* - \bar{\theta}}{\bar{\sigma}}\right)\right) \pi(\hat{\theta})}{F \cdot H(\frac{\theta^* - \bar{\theta}}{\bar{\sigma}}) - c},
\]

denoted by \( I(\hat{\theta}) \). Therefore, the equilibrium interbank rate must be \( I(\hat{\theta}) \), due to the nature of the competitive interbank market. In fact, if the interbank rate is higher than this level, this marginal bank as well as the banks of lower quality cannot afford the liquidity, so the total supply of liquidity would exceed the total demand. On the other hand, if the interbank rate is lower, some banks of lower quality can afford and thus demand and compete for liquidity, so the total demand would exceed the total supply. In short, the equilibrium rate must be equal to the marginal bank’s equity value divided by its funding shortage. Finally, it is important to emphasize that in terms of economic mechanism, \( (\hat{\theta}, I) \) are simultaneously determined; as in any general equilibrium model, prices and the allocation must be jointly determined in equilibrium.

We have Lemma 5 for the interbank market run equilibrium.

**Lemma 5** The interbank market run equilibrium is characterized by (13a)-(13b), which gives a unique interbank rate \( I \) for a given \( \theta^* \). Under a sufficient condition that \( c \) is high enough, we have the comparative statics that \( \frac{\partial I}{\partial \theta^*} > 0 \) and \( \frac{\partial I}{\partial \mu} < 0 \).

**Proof:** see Appendix.

The intuition behind the comparative statics in Lemma 5 is easy to understand. The more conservative the creditors are (i.e., a higher \( \theta^* \)), the more liquidity banks hoard (i.e., a higher \( F \cdot H(\frac{\theta^* - \bar{\theta}}{\bar{\sigma}}) \) for every given \( \theta \)); banks run on the interbank market more strongly, and hence the equilibrium interbank rate \( I \) is higher. When there is an aggregate negative shock on asset quality (i.e., a lower \( \mu \)), some banks need more liquidity than they expect. This means either that the aggregate demand for liquidity in the interbank market increases or that the aggregate supply decreases, which pushes up the interbank rate.

To summarize, we have:

**Proposition 4** The creditor run equilibrium ((12a)-(12b)) results in a unique \( \theta^* \) for a given \( I \), while the interbank market run equilibrium ((13a)-(13b)) determines a unique \( I \) for a given \( \theta^* \). The equilibrium in the system at \( T_1 \) is characterized by the fixed point problem between \( \theta^* \) and \( I \).
Crisis and amplification  So far we have assumed that there is no aggregate uncertainty but only idiosyncratic shocks to banks, that is, the distribution $g(\cdot)$ is given and deterministic. Now we consider that there is aggregate uncertainty. Specifically, as in Allen and Gale (2000) and Diamond and Rajan (2005), we allow a zero-probability event to occur. There are two states of nature at $T_1$ for the aggregate economy: normal state ($s = N$) and extreme state ($s = \varepsilon$). Ex ante, at $T_0$, the extreme state will occur with negligible probability (in the limit, probability zero) and the normal state will occur almost surely. If the normal state occurs, the asset quality distribution is given by $g_N(\cdot)$ while in the extreme state the distribution is $g_{\varepsilon}(\cdot)$, where $g_N$ has first-order stochastic dominance over $g_{\varepsilon}$ (that is, their c.d.f. satisfies that $G_N(\theta) < G_{\varepsilon}(\theta)$ for any $\theta \in (-\infty, +\infty)$). Following the previous example, we can assume that in state $N$ the distribution of $\theta$ is $\theta \sim N(\mu, \sigma^2)$ and in state $\varepsilon$ it is $\theta \sim N(\mu_{\varepsilon}, \sigma^2)$ where $\mu_{\varepsilon} < \mu$; that is, $g_N(\theta) = \phi(\theta; \mu, \sigma^2)$ and $g_{\varepsilon}(\theta) = \phi(\theta; \mu_{\varepsilon}, \sigma^2)$.

The aggregate uncertainty can be interpreted in an alternative way. As in the business cycle literature (e.g., Kiyotaki and Moore (1997)), the occurrence of state $\varepsilon$ is equivalent to the economy suffering an unexpected aggregate shock (away from the normal state $N$).

In Propositions 1 and 2, we have shown that for a given distribution $g(\cdot)$, we have the equilibrium outcome $(c, R, \hat{\theta}, \theta^*, I)$. So, if agents can perfectly foresee the aggregate state, $N$ or $\varepsilon$, we have the corresponding equilibrium, denoted by $(c_s, R_s, \theta^s, I_s)$, where $s = N$ and $\varepsilon$.

At $T_0$, agents are uncertain about the aggregate state at $T_1$. However, because the extreme state will occur with negligible probability, it has no effect on the allocation at $T_0$. The allocation is completely determined by the distribution $g_N(\cdot)$. That is, the allocation at $T_0$ is the vector $(c_N, R_N)$, the cash holdings being $c_N$ and the interest rate being $R_N$ in the deposit contract.

Now we examine what will happen under this allocation when the small-probability event (i.e., the extreme state) occurs at $T_1$. Under the shock, the equilibrium at $T_1$ is given by the system of equations (12a)-(12b) and (13a)-(13b), where the allocation $(c, R)$ is $(c_N, R_N)$ while the asset quality distribution $g(\cdot)$ is replaced by $g_{\varepsilon}(\cdot)$ in (13a) and the public information in (12a) is also replaced by $g_{\varepsilon}(\cdot)$ (so the posterior (conditional) density of $\theta$ in (12a) is $h_g(\theta|\cdot)$); and the new equilibrium outcome $(\bar{\theta}, \theta^*, I)$ is denoted by $(\hat{\theta}_{N\varepsilon}, \theta^*_{N\varepsilon}, I_{N\varepsilon})$.

We have the following result.

34
Proposition 5 Under the allocation \((c, R) = (c_N, R_N)\) for the normal state, when the shock (extreme state) occurs at \(T_1\) (i.e., \(g = g_e\)), the equilibrium, characterized by \((\widehat{\theta}_{N \varepsilon}, \theta^*_N, I_{N \varepsilon})\), is determined by the system of equations (12a)-(12b) and (13a)-(13b). We have that \(\widehat{\theta}_{N \varepsilon} > \widehat{\theta}_N\), \(\theta^*_{N \varepsilon} > \theta^*_N\), and \(I_{N \varepsilon} > I_N\). The aggregate shock triggers a reinforcing spiral between creditor runs and the interbank market run in reaching the new equilibrium in that \(\frac{\partial I}{\partial \theta} < 0\) in (13a)-(13b), \(\frac{\partial \theta^*}{\partial T} > 0\) in (12a)-(12b), and \(\frac{dI}{dT} > 0\) in (13a)-(13b).

Proof: see Appendix.

It is easy to show that under the ‘surprising’ shock, the bank failure threshold, the calling threshold of creditors and the interbank rate all increase and are higher than expected, i.e., \(\widehat{\theta}_{N \varepsilon} > \widehat{\theta}_N\), \(\theta^*_{N \varepsilon} > \theta^*_N\), and \(I_{N \varepsilon} > I_N\).

Our focus is to understand the spiraling effect triggered by the shock. The adverse shock \(g_N \rightarrow g_e\) (or \(\mu \downarrow \mu_e\)) has two channels of impact. The first is the individual (local) effect, which corresponds to the public information changing from \(g_N\) to \(g_e\) in (12a). Intuitively, for any individual creditor in any bank, he receives bad news about the asset quality of his own bank. The second is the systemic effect, which corresponds to the asset quality distribution in the system changing from \(g_N\) to \(g_e\) in (13a). The adverse shock triggers a chain of actions and reactions in the system and impacts the asset price - the interbank rate. Specifically, there is a feedback spiral between the interbank market run and creditor runs, as illustrated by Figure 6.
Basically, there is a feedback loop between $I$ and $\theta^*$. A higher interbank rate exacerbates creditor runs. In turn, a higher chance of creditor run leads to all banks hoarding more liquidity, increasing the interbank rate.\footnote{It is important to emphasize that our model of the interbank market is a Walrasian economy, not a game; the actual agents (banks) are infinitesimal price-takers, not strategic players. The price - the interest rate $I$ - plays a key role in determining the equilibrium, as shown in Figure 6.} Empirically, $I$ measures interbank market freezing and $\theta^*$ measures liquidity evaporation in the system. Therefore, interbank market freezing and liquidity evaporation reinforce each other, which explains the unprecedented event in the recent crisis discussed at the beginning of this paper. Put slightly differently, an adverse aggregate shock triggers the reinforcing spiral between the decrease in supply of liquidity (i.e., the interbank run) and the increase in demand for liquidity (i.e., creditor runs) in the system.

We have compared the equilibrium outcome $(\theta_{N\varepsilon}, \theta^*_{N\varepsilon}, I_{N\varepsilon})$ with $(\theta_N, \theta^*_N, I_N)$. In another way, it is helpful to compare the equilibrium outcome $(\theta_{N\varepsilon}, \theta^*_{N\varepsilon}, I_{N\varepsilon})$ with $(\theta_\varepsilon, \theta^*_\varepsilon, I_\varepsilon)$. That is, if agents could foresee the adverse aggregate shock, how much better would the equilibrium outcome be? In anticipation of the extreme state, the equilibrium allocation at $T_0$ should be $(c_\varepsilon, R_\varepsilon)$. Comparing this allocation with the allocation without preparation for the extreme state, we can show that both the cash holdings and the interest rate are too low, i.e., $c_N < c_\varepsilon$ and $R_N < R_\varepsilon$. Therefore, we can imagine the following scenario: at $T_0$ agents foresee the state $\varepsilon$ and set the allocation $(c_\varepsilon, R_\varepsilon)$, and at $T_1$ there is no shock on the state but instead a shock on the allocation: $(c_\varepsilon, R_\varepsilon)$, which means that some cash reserves are wiped out and the deposit rate is cut. We ask: what the consequences are under this shock. Clearly, an insufficient cash reserve in the system at $T_1$ can trigger a big crisis. Also, ceteris paribus, a lower interest rate means a lower stake of a creditor in his bank and thus a more severe coordination problem between creditors, and a creditor more likely runs for the exit (see Lemma 1). Therefore, there are two joint forces (both the too-low cash holdings and the too-low interest rate) leading to higher $\theta$, $\theta^*$ and $I$. This analysis may shed light on why debt runs and the liquidity crisis itself in 2007-2009 were so severe. It could have been in part because the pre-crisis interest rate was too low in the contract between financial institutions (e.g., shadow banks) and their investors. In particular, because $R$ is in the denominator in determining $\theta^*$ (see (3)), a slight decrease in $R$ can raise $\theta^*$ significantly. The ex ante being “awash with liquidity”,

Figure 6: Feedback loop
leading to a lower equilibrium interest rate, can exacerbate the ex post “liquidity crunch” once an unexpected adverse shock hits.

**Contagion** We have discussed the origin of the crisis and the amplification mechanism. Our model also demonstrates a novel channel of contagion, which is through the channel of financial institutions “fishing from the same pool of short-term funding”. In our model, a lower-quality bank fails not because it suffers a loss in its asset and thus its capital when investing in other banks, or because its own asset suffers a negative shock and thus it has to increase the demand of liquidity. Rather, the key problem can be that some higher-quality banks in the system suffer a negative shock on their asset and thus need more liquidity than expected (in order to reduce their illiquidity risk). The decrease in the net supply of liquidity of these higher-quality banks leads to a shrinking of liquidity in the pool, which actually hurts lower-quality banks first and most. In other words, the negative shock can be on higher-quality banks but lower-quality banks suffer first. In fact, in the financial crisis of 2007-2009, the crisis originated in the US, where there had been a subprime mortgage crisis; however, the first bank that suffered bank runs was Northern Rock, a UK bank. This contagion, through the channel of sharing the common pool of short-term funding, is formalized in our model.

4 Conclusion

This paper presents a theory of interbank lending and offers a framework for understanding the origin of crisis, contagion and amplification. On the methodology side, we study global games in general equilibrium, so that we can explicitly model a competitive interbank market, and examine how the interaction among creditors within a bank affects and is affected by other banks through the interbank market.

Our model demonstrates banking crises originating in fundamental shocks, i.e., aggregate shocks on banks’ asset quality. Our model shows the interplay between illiquidity risk and insolvency risk in a financial system context. Our paper highlights the amplification mechanism of the feedback between the interbank market run and creditor runs, which can magnify a small shock to a systemic crisis. Financial contagion in our model occurs because institutions fish short-term funding from the same pool.
Our paper may shed new light on the debate on the Repo run and has something to say about the phenomenon of ex ante being “awash with liquidity” versus ex post “liquidity crunch”. Our model implies that the development of a well-functioning interbank market (for example, the global financial integration and openness in recent years) can improve the social welfare, i.e., this is because of both ex post better liquidity sharing and hence ex ante more efficient portfolio allocations. But it also contributes to a severe systemic crisis when an adverse shock hits, because of the contagion and amplification effects.
5 Appendix

A numerical example:

We provide a numerical example to illustrate the main results of the model. The numerical example is to show the qualitative (rather than quantitative) aspect of the model.

We set the parameter values as follows: $X = 8$, $F = 0.3$, $R_0 = 1.03$, $\frac{w_0}{\gamma} = 1$, $\pi = 0.2$, $\bar{\pi} = 1$, $\mu = 0.5$, $\sigma = 1$, $\delta = 0.1$, $\mu_\pi = 0.5$, $\sigma_\pi = 1$. The endogenous variables in the model are $(c, R, \theta^*, \hat{\theta}, I)$.

The second best equilibrium The bank value $V$ in Proposition 1 is a ‘∪’-shape function, as shown by Figure A-1. The optimal level of cash holdings is $c = 0.1420$, at which $V = 3.9542$, $R = 1.5417$, $\theta^* = 0.6552$, $\hat{\theta} = -0.0005$, $\pi(\hat{\theta}) = 0.3337$, and $I = 14.4978$.

![Figure A-1: Bank value in the second best equilibrium](image)

The competitive equilibrium The equilibrium cash holdings for each individual bank are $c = 0.2265$, at which $V = 3.9395$, $R = 1.2466$, $\theta^* = 1.1933$, $\hat{\theta} = -\infty$, and $\pi(\hat{\theta}) = 0.2$. The interbank rate is $I = \frac{\pi + \bar{\pi}}{2}X = 4.8$.

The amplification effect Let the original allocation be under the competitive equilibrium for the normal state, that is, $c_N = 0.2265$ and $R_N = 1.2466$. When the extreme state occurs, it is assumed that $\mu_\varepsilon = -0.5$, in comparison with $\mu = 0.5$ in the normal state. In the new equilibrium, we can find that $\theta^*_{N\varepsilon} = 1.2033$, $\hat{\theta}_{N\varepsilon} = 0.4007$, $\pi(\hat{\theta}_{N\varepsilon}) = 0.5684$, and $I_{N\varepsilon} = 47.8506$. If agents
could foresee the adverse aggregate shock, the allocation under the competitive equilibrium would be $c_s = 0.2452$ and $R_s = 1.3816$.

**Setup in Section 2.1.1:**

Here we provide the specific setup for the correlated asset payoffs across banks.

At $T_2$, the economy has a continuum of states, corresponding to the interval $[0, 1]$. The realization of the state will be drawn by the nature at $T_2$ according to the uniform probability distribution rule. That is, $s \sim U[0, 1]$, where $s$ denotes the state of the economy. There exists a correspondence between asset quality at $T_1$ and asset payoffs at $T_2$. Specifically, denoting the payoff at $T_2$ in state $s$ for an asset of quality $\theta$ at $T_1$ by function $\bar{x}(\theta, s)$, we have

$$\bar{x}(\theta, s) = \begin{cases} X & \text{if } s \in [0, \pi(\theta)] \\ 0 & \text{if } s \notin [0, \pi(\theta)] \end{cases}.$$ 

Intuitively, an asset with higher quality is more ‘robust’ in the sense that it delivers cash flow $X$ in more states. This characterization has two implications. First, for an asset of quality $\theta$ at $T_1$, the probability for it to realize $X$ at $T_2$ perceived at $T_1$ is $\pi(\theta)$. Second, for a given realization of the state of the economy at $T_2$, if the quality-$\theta'$ asset pays 0, the quality-$\theta''$ asset must pay 0 for any $\theta' > \theta''$. The second implication means that the asset payoff realizations at $T_2$ across banks are correlated and, in particular, the risk of its debt cannot be reduced when a higher-quality bank acquires some assets from lower-quality banks. Figure A-2 illustrates correlated asset payoffs.

![Figure A-2: Correlated asset payoffs](image-url)
Proof of Lemma 1:

The prior of $\theta$ is $g(\theta) \sim N(\mu, \sigma^2)$. The signal is $\theta^* = \theta + \delta \epsilon$, where $\epsilon \sim N(0, 1)$. So, $h_g(\theta^*) \sim N(\frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^*; \frac{1}{\alpha + \beta})$, where $\alpha = \frac{1}{\sigma^2}$ and $\beta = \frac{1}{\delta^2}$.

By (2), we have $\hat{\theta} = \theta^* - \delta \Phi^{-1}(\frac{c}{F})$. So we can combine (1) and (2):

$$\int_{\theta = \theta^* - \delta \Phi^{-1}(\frac{c}{F})}^{\theta = +\infty} R \cdot \pi(\theta) \cdot \phi(\theta; \frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^*; \frac{1}{\alpha + \beta}) d\theta = \frac{w_0}{\gamma}. \tag{A1}$$

We denote the left hand side of (A1) by $Y(\theta^*)$, which is a function of $\theta^*$.

The key of the proof is to determine monotonicity of $Y(\theta^*)$. There are three forces in determining the monotonicity, as shown in Figure A-3: i) The lower boundary of the integral in $Y(\theta^*)$, $\theta^* - \delta \Phi^{-1}(\frac{c}{F})$, is increasing in $\theta^*$, so $Y(\theta^*)$ tends to be decreasing in $\theta^*$; ii) The conditional mean, $\frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^*$, is increasing in $\theta^*$, so $Y(\theta^*)$ tends to be increasing in $\theta^*$; iii) $\pi(\theta)$ is an increasing function, which makes $Y(\theta^*)$ tend to be increasing in $\theta^*$.

![Figure A-3: The forces in determining the monotonicity of $Y(\theta^*)$](image)

First, we consider the limiting case of $\frac{\delta}{\sigma} \to 0$. In this case, $\frac{\beta}{\alpha + \beta} \to 1$. Hence, the conditional mean, $\frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^*$, and the lower boundary of the integral, $\theta^* - \delta \Phi^{-1}(\frac{c}{F})$, increase with the same speed. So $Y(\theta^*)$ is certainly increasing since $\pi(\theta)$ is an increasing function. Concretely, under the
limit $\delta \to 0$ for a given $\sigma$, we have:

\[
Y(\theta^*) = R \cdot \pi(\theta^*) \cdot \int_{\theta^* - \delta \Phi^{-1}(\frac{c}{F})}^{+\infty} \phi(\theta; \theta^*, \delta^2) d\theta
\]

\[
= R \cdot \pi(\theta^*) \cdot \Phi\left(\frac{\theta^* - (\theta^* - \delta \Phi^{-1}(\frac{c}{F}))}{\delta}\right)
\]

\[
= R \cdot \pi(\theta^*) \cdot \frac{c}{F}.
\]

So (3) is obtained. (A1) admits a unique solution with respect to $\theta^*$ because $Y(\theta^*)$ is monotonically increasing. Similarly, we can prove the case for the limit $\sigma \to +\infty$ for a given $\delta$.

Next, we consider the non-limiting case. We show that when $\frac{\delta}{\sigma}$ is small but not zero, (A1) can admit two solutions. Concretely, when $\delta$ is small, $Y(\theta^*)$ becomes

\[
Y(\theta^*) = \int_{\theta^* - \delta \Phi^{-1}(\frac{c}{F})}^{\theta^* + \infty} R \cdot \pi(\theta) \cdot \phi(\theta; \frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^*, \frac{1}{\alpha + \beta}) d\theta
\]

\[
= R \cdot \pi\left(\frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^*\right) \cdot \Phi\left(\frac{\frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^* - (\theta^* - \delta \Phi^{-1}(\frac{c}{F}))}{(\frac{1}{\alpha + \beta})^2}\right)
\]

\[
= R \cdot \pi\left(\frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^*\right) \cdot \Phi\left(\frac{\frac{\alpha}{\alpha + \beta} (\mu - \theta^*) + \delta \Phi^{-1}(\frac{c}{F})}{(\frac{1}{\alpha + \beta})^2}\right)
\]

(A2)

The second term in the third line above reflects the effect of $\pi(\theta)$ being an increasing function. The third term captures the effect that the conditional mean increases slower than the lower boundary of the integral. The second term is increasing in $\theta^*$ and the third term is decreasing in $\theta^*$. So, whether $Y(\theta^*)$ is increasing in $\theta^*$ is ambiguous. The first order derivative on $Y(\theta^*)$ is

\[
\frac{\partial Y(\theta^*)}{\partial \theta^*} \propto \left[\frac{1}{\pi} + (\pi - \pi) \Phi\left(\frac{\frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^* - \mu_\pi}{\sigma_\pi}\right)\right] \cdot \phi\left(\frac{\frac{\alpha}{\alpha + \beta} (\mu - \theta^*) + \delta \Phi^{-1}(\frac{c}{F})}{(\frac{1}{\alpha + \beta})^2}\right)\left(-\frac{\alpha}{\alpha + \beta}\right)
\]

\[
+ (\pi - \pi) \phi\left(\frac{\frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^* - \mu_\pi}{\sigma_\pi}\right) \Phi\left(\frac{\frac{\alpha}{\alpha + \beta} (\mu - \theta^*) + \delta \Phi^{-1}(\frac{c}{F})}{(\frac{1}{\alpha + \beta})^2}\right)
\]

Hence, there are three regions for $Y(\theta^*)$. When $\theta^*$ is very low, $\frac{\partial Y(\theta^*)}{\partial \theta^*} < 0$. In the middle region around $\theta^* = \mu_\pi$ (where the second term in (A2) is increasing fast in $\theta^*$), $\frac{\partial Y(\theta^*)}{\partial \theta^*} > 0$. When $\theta^*$ is very high, $\frac{\partial Y(\theta^*)}{\partial \theta^*} < 0$ again. Figure A-4 plots $Y(\theta^*)$ for a set of parameters, where $F = 0.6, c = 0.26, R = 1.5598, \pi = 0.2, \overline{\pi} = 1, \mu = \mu_\pi = 0.5, \sigma = \sigma_\pi = 1, \delta = 0.1$. If $\frac{\alpha}{\alpha + \beta} = 1$, the two solutions are $\theta^* = 0.9595$ and $\theta^* = 8.086$, which correspond to $\pi(\theta^* = 0.9595) = 0.7416$ and $\pi(\theta^* = 8.086) = 1.$
Clearly, the higher solution is close to being the “bad” equilibrium, i.e., creditors run on the bank no matter what signals they receive.

Therefore, (A1) can admit two solutions: one is around $\theta^* = \mu_\pi$ and the other is higher. We prove that the lower solution corresponds to a stable equilibrium while the higher solution corresponds to an unstable equilibrium. In a stable equilibrium, the best response function (of an individual creditor to its peers) intersects the 45 degree line at a slope of less than 1. Let an individual creditor’s threshold be $\theta^{i*}$ and its peers’ be $\theta^*$. So

$$Y(\theta^*) \geq Y(\theta^{i*})$$

We write the LHS as the function $Y(\theta^*, \theta^{i*})$. In solving the equation $Y(\theta^*, \theta^{i*}) = \frac{w_0}{\gamma}$, we have

$$\frac{\partial \theta^{i*}}{\partial \theta^*} = -\frac{\partial Y}{\partial \theta^*}.$$ 

Based on the previous result, $Y$ is an increasing function at the lower solution, that is, $Y(\theta^* + \Delta, \theta^{i*} + \Delta) - Y(\theta^*, \theta^{i*}) > 0$ for a small positive $\Delta$. So $\left(\frac{\partial Y}{\partial \theta^*} + \frac{\partial Y}{\partial \theta^{i*}}\right)\Delta > 0$, and thus

$$\frac{\partial \theta^{i*}}{\partial \theta^*} > 0.$$ 

Therefore, $\frac{\partial \theta^{i*}}{\partial \theta^*} < 1$. Similarly, we can prove that $\frac{\partial \theta^{i*}}{\partial \theta^*} > 1$ at the higher solution.

If the creditor-run game has two threshold equilibria, it is reasonable to select the equilibrium corresponding to the lower solution of $\theta^*$ under the following three criteria: i) It is a stable equilibrium. Stability is the equilibrium selection criterion in Frankel, Morris and Pauzner (2003), Vives (2005, 2013)), Angeletos, Hellwig and Pavan (2007), etc.; ii) It Pareto-dominates the other equilibrium; iii) The other solution becomes extremely large and approaches infinite (i.e., $\theta^* \rightarrow +\infty$).

In the low region of $\theta^*$, $\pi(\theta)$ is low, so (A1) does not have solutions.
when \( \frac{\delta}{\sigma} \to 0 \), which is thus close to being the bad equilibrium (i.e., creditors run on the bank no matter what signals they receive).

Finally, we conduct comparative dynamics. We can write the solution to (1) as the reaction function \( \theta^* (\tilde{\theta}^i; R) \) and the solution to (2) as the reaction function \( \tilde{\theta}^i (\theta^*; c) \). It is easy to show that \( \frac{\partial \tilde{\theta}^i}{\partial c} < 0 \) and \( \frac{\partial \tilde{\theta}^i}{\partial \sigma^*} > 0 \) in (2), and \( \frac{\partial \theta^*}{\partial \sigma^*} > 0 \) and \( \frac{\partial \theta^*}{\partial R} < 0 \) in (1). Hence, a decrease in \( c \) leads to \( \theta^* \) increasing along an upward spiral (feedback) in that \( \frac{\partial \tilde{\theta}^i}{\partial c} < 0 \) in (2), \( \frac{\partial \theta^*}{\partial \sigma^*} > 0 \) in (1), and \( \frac{\partial \tilde{\theta}^i}{\partial \sigma^*} > 0 \) in (2). Similarly, a decrease in \( R \) leads to \( \theta^* \) increasing along an upward spiral (feedback) in that \( \frac{\partial \theta^*}{\partial R} < 0 \) in (1), \( \frac{\partial \tilde{\theta}^i}{\partial \sigma^*} > 0 \) in (2), and \( \frac{\partial \theta^*}{\partial \sigma^*} > 0 \) in (1). Also, we can show \( \frac{\partial \theta^*}{\partial \sigma^*} < 1 \) in (1). In fact, if we write the LHS of (1) as the function \( Y(\theta^*, \tilde{\theta}^i) \), we see \( Y(\theta^* + \Delta, \tilde{\theta}^i + \Delta) - Y(\theta^*, \tilde{\theta}^i) > 0 \) in the previous proof.

**Proof of Lemma 2:**

At the beginning, we show that under general conditions the bank survives if and only if its asset quality is above a threshold. We find a sufficient condition – the condition under which the function \( LS(\theta) \) is increasing in \( \theta \), where \( LS(\theta) \) is defined as

\[
LS(\theta) = \frac{[(1 - c)X - R \cdot F \cdot \left(1 - H\left(\frac{\theta^* - \theta}{\delta}\right)\right)] \pi(\theta)}{I} - \left[F \cdot H\left(\frac{\theta^* - \theta}{\delta}\right) - c\right]
\]

The FOC of \( LS(\theta) \) is

\[
\frac{\partial LS(\theta)}{\partial \theta} = \frac{[(1 - c)X - R \cdot F \cdot \left(1 - H\left(\frac{\theta^* - \theta}{\delta}\right)\right)] \pi'(\theta)}{I} + \frac{F \cdot h\left(\frac{\theta^* - \theta}{\delta}\right)}{\delta} \left[1 - \frac{R \cdot \pi(\theta)}{I}\right]
\]

Therefore, a sufficient condition for \( \frac{\partial LS(\theta)}{\partial \theta} > 0 \) is \( I > R \) by noting that \( \pi(\theta) \leq 1 \) for any \( \theta \).

We start the formal proof. The proof is similar to the proof of Lemma 1. First, we obtain \( \tilde{\theta}^i \) as a function of \( \theta^* \) in (5), denoted by \( \tilde{\theta}^i (\theta^*) \). We prove that under a weak condition, \( 0 \leq \frac{\partial \tilde{\theta}^i (\theta^*)}{\partial \theta^*} < 1 \). That is, \( \tilde{\theta}^i \) is increasing in \( \theta^* \), but the speed of the increase in \( \tilde{\theta}^i \) is lower than the speed of \( \theta^* \). This is clearly true if \( \tilde{\theta}^i \) is the corner solution in (5). We focus on the case of non-corner solutions in (5). By differentiating on both sides of (5a), we can obtain

\[
\frac{\partial \tilde{\theta}^i}{\partial \theta^*} = \frac{F \cdot h\left(\frac{\theta^* - \tilde{\theta}^i}{\delta}\right)\left(\frac{1}{\delta}\right) - \frac{R \cdot F \cdot h\left(\frac{\theta^* - \tilde{\theta}^i}{\delta}\right)}{I}(\frac{1}{\delta})\pi(\tilde{\theta}^i)}{\left[(1 - c)X - R \cdot F \cdot \left(1 - H\left(\frac{\theta^* - \theta}{\delta}\right)\right)\right] \pi'(\tilde{\theta}^i) + \frac{R \cdot F \cdot h\left(\frac{\theta^* - \tilde{\theta}^i}{\delta}\right)}{I}(\frac{1}{\delta})\pi(\tilde{\theta}^i)} + F \cdot h\left(\frac{\theta^* - \tilde{\theta}^i}{\delta}\right)\left(\frac{1}{\delta}\right)
\]
So, if \( R \cdot \pi(\hat{\theta}^i) < I \) and \( I \neq +\infty \), we have that \( 0 < \frac{\partial \pi(\theta^*)}{\partial \theta} < 1 \). Also, if \( R < I \), it must be the case that \( R \cdot \pi(\hat{\theta}^i) < I \) by noting that \( \pi(\theta) \leq 1 \) for any \( \theta \). Therefore, a sufficient condition to guarantee \( 0 < \frac{\partial \pi(\theta^*)}{\partial \theta} < 1 \) is \( R < I \) and \( I \neq +\infty \).

Substituting \( \hat{\theta}^i(\theta^*) \) into (4), we have

\[
\int_{\theta=\hat{\theta}^i(\theta^*)}^{\theta=+\infty} R \cdot \pi(\theta) \cdot \phi(\theta; \frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^*; \frac{1}{\alpha + \beta})d\theta = \frac{w_0}{\gamma}. \tag{A3}
\]

Denote LHS of (A3) as \( Y(\theta^*) \). By the proof of Lemma 1, if \( \hat{\theta}^i \) increases as fast as \( \theta^* \), \( Y(\theta^*) \) is increasing in \( \theta^* \). Now because \( \hat{\theta}^i \) increases less faster than \( \theta^* \), \( Y(\theta^*) \) is certainly increasing in \( \theta^* \).

Concretely, by \( \frac{\partial \hat{\theta}^i(\theta^*)}{\partial \theta^*} < 1 \), we have that \( \hat{\theta}^i(\theta^* + \triangle) < \hat{\theta}^i(\theta^*) + \triangle \) for a small positive \( \triangle \). Therefore,

\[
Y(\theta^* + \triangle) = \int_{\theta=\hat{\theta}^i(\theta^* + \triangle)}^{\theta=+\infty} R \cdot \pi(\theta) \cdot \phi(\theta; \frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} (\theta^* + \triangle); \frac{1}{\alpha + \beta})d\theta
\]

\[
> \int_{\theta=\hat{\theta}^i(\theta^*) + \triangle}^{\theta=+\infty} R \cdot \pi(\theta) \cdot \phi(\theta; \frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^*; \frac{1}{\alpha + \beta})d\theta
\]

\[
\geq \int_{\theta=\hat{\theta}^i(\theta^*)}^{\theta=+\infty} R \cdot \pi(\theta) \cdot \phi(\theta; \frac{\alpha}{\alpha + \beta} \mu + \frac{\beta}{\alpha + \beta} \theta^*; \frac{1}{\alpha + \beta})d\theta
\]

\[
= Y(\theta^*)
\]

The second inequality above is proved in Lemma 1 when \( \frac{\delta}{\sigma} \to 0 \), or for the middle region of \( \theta^* \) (around \( \theta^* = \mu_\pi \)).

To summarize, a sufficient condition for the creditor-run game having a unique (stable) equilibrium is \( R < I \) and \( I \neq +\infty \) when \( \frac{\delta}{\sigma} \) is small enough. A wide set of parameters (e.g., \( X \) is big enough) can guarantee that \( R < I \) in equilibrium. The numerical example above in the Appendix illustrates one case under a set of parameter values.

Finally, we conduct comparative statics. We have already proved that \( \frac{\partial \hat{\theta}^i}{\partial \theta^*} \geq 0 \) in (5). Now we prove that \( \frac{\partial \hat{\theta}^i}{\partial \theta} \geq 0 \) in (5) and \( \frac{\partial \theta^*}{\partial \theta^*} > 0 \) in (4). The result of \( \frac{\partial \theta^*}{\partial \theta^*} > 0 \) in (4) can be immediately
obtained, which is the same as the case in (1). By differentiating on (5a), we can obtain

\[
\frac{\partial \tilde{b}_i}{\partial I} = \frac{\left(1 - c\right)X - R \cdot F \cdot \left(1 - H \left(\frac{\theta^* - \tilde{\theta}}{\delta}\right)\right) \pi(\tilde{\theta})(\frac{1}{F})}{F \cdot h \left(\frac{\theta^* - \tilde{\theta}}{\delta}\right)(\frac{1}{2})(1 - R \cdot \pi(\tilde{\theta}) - \frac{\tilde{b}_i}{I}) + \left(1 - c\right)X - R \cdot F \cdot \left(1 - H \left(\frac{\theta^* - \tilde{\theta}}{\delta}\right)\right) \pi(\tilde{\theta})}
\]

Under the sufficient condition \( R < I \), we have that \( 1 - \frac{R \cdot \pi(\tilde{\theta})}{I} > 0 \) and thus that \( \frac{\partial \tilde{b}_i}{\partial I} > 0 \).

**Proof of Lemma 3:**

With an interbank market, the equilibrium at \( T_1 \) is characterized by the triplet \((\theta^*, \tilde{\theta}, I)\), which solves the system of equations (4)-(5), (6) and (7) for given \( c \) and \( R \).

By (6), we can replace \( \tilde{b}_i \) in (4)-(5) with \( b_i \). By substituting the corner solution \( \tilde{\theta} = \tilde{\theta} \) into (4), we can solve the unique \( \theta^* \) for a given \( R \), denoted as \( \theta^* = \theta^{*T}(R) \) and \( \tilde{\theta} = \tilde{\theta} \) into (7), we can find out the following cutoff value of \( c \) (for a given \( R \)):

\[
c^T(R) = \int_{\tilde{\theta}}^{\tilde{\theta}} F \cdot H \left(\frac{\theta^*(R) - \theta}{\delta}\right)g(\theta)d\theta
\]

Now we can divide \( c \) into three ranges: \( c < c^T(R) \), \( c = c^T(R) \) and \( c > c^T(R) \).

In the first range of \( c < c^T(R) \), the solution of \((\theta^*, \tilde{\theta}, I)\) is non-corner one. Concretely, we can find the solution in the following way. First, based on Lemma 2, we obtain the unique solution of pair \((\theta^*, \tilde{\theta})\) for a given \( I \). Denote the solution by \( \theta^*(I) \) and \( \tilde{\theta}(I) \). Then, by substituting \( \theta^*(I) \) and \( \tilde{\theta}(I) \) into the market clearing condition (7), we can find out \( I \), that is,

\[
\int_{\tilde{\theta}(I)}^{\tilde{\theta}} cg(\theta)d\theta = \int_{\tilde{\theta}(I)}^{\tilde{\theta}} F \cdot H \left(\frac{\theta^*(I) - \theta}{\delta}\right)g(\theta)d\theta
\]

In the second range of \( c = c^T(R) \), we have that \( \tilde{\theta} = \tilde{\theta} \) and \( \theta^* = \theta^{*T}(R) \) in equilibrium. There is more than one interbank rate \( I \) that can clear the interbank market. The equilibrium interbank rate can be found in the following way. We first work out the maximum rate that bank \( \tilde{\theta} \) can afford (where \( \tilde{\theta} = -\infty \)):

\[
I(\tilde{\theta}) = \tilde{\theta} = \frac{\left[(1 - c)X - R \cdot F \cdot \left(1 - H \left(\frac{\theta^* - \tilde{\theta}}{\delta}\right)\right)\right] \pi(\tilde{\theta})}{F \cdot H \left(\frac{\theta^* - \tilde{\theta}}{\delta}\right) - c}
= \frac{[(1 - c)X] \pi}{F - c}
\]
Then, any rate \( I \in [1, I(\theta)] \) can be the equilibrium rate. The equilibrium rate can be lower than \( I(\theta) \) because no banks of even lower quality compete with banks of quality \( \theta \). Hence, although the interbank rate falls below \( I(\theta) \), the aggregate demand for liquidity does not change and thus the interbank market is still cleared.

In the third range of \( c > c^T(R) \), the aggregate supply of liquidity exceeds the maximum aggregate demand. So the equilibrium rate must be equal to 1, which is the return of storing cash.

**Proof of Lemma 4 and Proposition 1:**

First, for a given \( c \), the system of equations (4)-(5), (6), (7) and (9\(^*\)) determines the vector \((R, \theta^*, \theta, I)\). Based on Lemma 3, for given \( c \) and \( R \), the pair \((\theta^*, \theta)\) is determined. Plugging the functions of \( \theta^*(R) \) and \( \theta(R) \) into (9\(^*\)), we can solve the equation of (9\(^*\)) with respect to \( R \). Overall, we can find \( \theta \) as a function of \( c \).

Second, by plugging the function of \( \theta(c) \) into the bank value (denoted by \( V \)) in the objective function in Program 1, we obtain \( V \) as a function of \( c \). Because all functions are continuous, the optimization of \( V \) on the close set \([0, 1]\) clearly has solutions.

**Proof of Proposition 2:**

Denote the equity value in (11) by \( V_E \). The first order derivative on \( V_E \) is

\[
\frac{\partial V_E}{\partial c^i} = \int_{\theta^i(c^i)}^{\theta^i(c^i)} [I - X \cdot \pi(\theta)] g(\theta) d\theta
\]

Our proof has three steps. First, we prove that if the competitive equilibrium exists, it must be true that \( \theta^i(c^i) \equiv \theta \) for any \( c^i \). We prove by contradiction. If \( \theta^i(c^i) \equiv \theta \) is not true, we have that \( \frac{\partial \theta^i(c^i)}{\partial c^i} < 0 \) for sufficiently small \( c^i \), by noting that \( \theta^i(c^i) = \max(\theta, \theta^T(c^i)) \) and \( \frac{\partial \theta^i(c^i)}{\partial c^i} < 0 \). This would mean that the optimum \( c^i \) for an individual bank is either 0 or 1, which would in turn mean that the fixed point of \( c \rightarrow (R, \theta^*, \theta, I) \rightarrow c \) does not exist. In fact, there are three possible cases for \( \frac{\partial V_E}{\partial c^i} \): i) \( I - X \cdot \pi(\theta) \geq 0 \). In the first case, \( \frac{\partial V_E}{\partial c^i} > 0 \) for any \( c^i \). So \( V_E \) is strictly increasing in \( c^i \). ii) \( I - X \cdot \pi(\theta) \leq 0 \). In the second case, \( \frac{\partial V_E}{\partial c^i} < 0 \) for any \( c^i \). So \( V_E \) is strictly decreasing in \( c^i \). iii) \( I - X \cdot \pi(\theta) < 0 < I - X \cdot \pi(\theta) \). In the third case, \( \frac{\partial V_E}{\partial c^i} < 0 \) when \( c^i \) is small; so \( V_E \) is decreasing in \( c^i \) when \( c^i \) is small and then either decreases further or starts to increase when \( c^i \) increases. Overall, in the above three cases, the optimum \( c^i \) to maximize \( V_E \) is either 0 or 1. The driving force behind
these extreme decisions is that an individual bank takes $I$ as given and being constant, with the outcome of the “constant returns to scale” effect.

Second, we prove that under conditions i) $I = \int_{\bar{\theta}}^{\bar{\theta}} [X \cdot \pi(\theta)] g(\theta) d\theta$ and ii) $\hat{\theta}^i (c^i) \equiv \bar{\theta}$, the competitive equilibrium exists. Condition ii) implies $\hat{\theta}^i (c^i = 0) = \bar{\theta}$, which can be written as $\frac{X \pi(\theta)}{F} \geq F$ (or $I \leq \frac{X \pi(\theta)}{F}$). We first examine the left part of the fixed point problem of $c \rightarrow (R, \hat{\theta}, \theta^*, I) \rightarrow c$. Based on the proof for Lemma 3, if the level of cash holdings $c$ is such that it exactly achieves the ex post efficiency (i.e., $\bar{\theta} = \theta^*$), any rate $I \in [1, I(\theta)]$ supports the equilibrium, where $I(\theta) = \frac{[(1-c)X] \pi}{F-c}$. It is easy to prove that $\frac{X \pi(\theta)}{F} < \frac{[(1-c)X] \pi}{F-c}$. Consequently, under condition ii), the interbank rate $I$ automatically satisfies $I \in [1, I(\theta)]$. Then, we go to the right part of the fixed point problem. Conditions i) and ii) together imply that $\frac{\partial V_{c^i}}{\partial c^i} = 0$. So, an individual bank can choose any $c^i$ as its optimal cash holdings, including the one that achieves the ex post efficiency. In sum, under conditions i) and ii), the fixed point problem has solutions. In order to guarantee that conditions i) and ii) are simultaneously satisfied, we need $\int_{\bar{\theta}}^{\bar{\theta}} [X \cdot \pi(\theta)] g(\theta) d\theta \leq \frac{X \pi(\theta)}{F}$, which means $F \leq \frac{2\pi}{\pi + \pi}$.

Here we also provide the concrete procedure to work out the competitive equilibrium. The procedure can be summarized as follows: $\hat{\theta} = -\infty \implies (4) \implies (9') \implies (\theta^*, R) \implies (7) \implies c^i \implies I(\theta = -\infty)$. First, by plugging $\hat{\theta} = -\infty$ into (4) and (9’), we can find the pair $(\theta^*, R)$ by solving the system of equations. Then, by plugging $\hat{\theta} = -\infty$ and the solved $\theta^*$ into (7), we can obtain the optimal $c$. Finally, through (5), we can work out the maximum interbank rate that the marginal bank can afford.

Last, we need to prove that the competitive equilibrium is unique, that is, the solution to the fixed point problem of $c \rightarrow (R, \hat{\theta}, \theta^*, I) \rightarrow c$ is unique. In fact, based on the proof of Lemma 3, if the $c$ is different from the one that achieves the ex post efficiency, the interbank rate is determined by the marginal bank, which is $I(\hat{\theta})$, where $\hat{\theta} > \theta$. Given this rate, $\hat{\theta}^i (c^i) \equiv \bar{\theta}$ cannot be true, and hence an individual bank’s optimal $c$ is either 1 or 0 as shown in the first step. So this cannot form a fixed point solution.

**Proof of Proposition 3:**

In the constrained second best equilibrium, $\hat{\theta} \geq \theta$, while in the competitive equilibrium, $\hat{\theta} = \bar{\theta}$. Considering $\frac{\partial \hat{\theta}}{\partial c} < 0$, the level of cash holdings is (weakly) higher in the competitive equilibrium than in the second best equilibrium.
Proof of Lemma 5:

First, we analyze (13a). We can rewrite (13a) as

\[
    c = \frac{\int_{\tilde{\theta}} F \cdot H(\frac{\theta - \tilde{\theta}}{\delta}) g(\theta; \mu) d\theta}{\int_{\tilde{\theta}} g(\theta; \mu) d\theta} \tag{A4}
\]

Write RHS of (A4) as a function with respect to \(\tilde{\theta}\) parameterized with \(\theta^*\), denoted by \(AL(\tilde{\theta}; \theta^*)\).

The first order derivative of \(AL(\tilde{\theta}; \theta^*)\) is

\[
    \frac{\partial AL}{\partial \tilde{\theta}} = F \cdot g(\tilde{\theta}; \mu) \frac{-H(\frac{\theta - \tilde{\theta}}{\delta}) \int_{\tilde{\theta}} g(\theta; \mu) d\theta + \int_{\tilde{\theta}} H(\frac{\theta - \tilde{\theta}}{\delta}) g(\theta; \mu) d\theta}{\int_{\tilde{\theta}} g(\theta; \mu) d\theta}
    < 0
\]

The inequality above is because \(H(\frac{\theta - \tilde{\theta}}{\delta})\) is decreasing in \(\theta\). So, we have that \(AL(\tilde{\theta}; \theta^*)\) is decreasing in \(\tilde{\theta}\) (for a given \(\theta^*\)), and it achieves its highest value at \(\tilde{\theta} = \theta^*\).

Therefore, when \(c \leq AL(\tilde{\theta} = \theta^*; \theta^*)\), the equation (13a) has a unique solution with respect to \(\tilde{\theta}\) for a given \(\theta^*\). Denote the solution by \(\tilde{\theta}(\theta^*; \mu)\).

We can do the comparative static analysis on the solution \(\tilde{\theta}(\theta^*; \mu)\). We prove that \(\frac{\partial \tilde{\theta}}{\partial \mu} > 1\) and \(\frac{\partial \tilde{\theta}}{\partial \sigma} < 0\) under general parameter conditions. We first prove the limit case of \(\delta \to 0\) for a given \(\sigma\). In fact, under the limit \(\delta \to 0\), we have the limiting function \(H(\frac{\theta^* - \tilde{\theta}}{\delta}) = \begin{cases} 1 & \text{when } \theta < \theta^* \\ [0,1] & \text{when } \theta = \theta^* \\ 0 & \text{when } \theta > \theta^* \end{cases}\).

Also, the function \(H(\frac{\theta^* - \theta}{\delta})\) with respect to \(\theta\) converges \textit{almost uniformly} to the limiting function when \(\delta \to 0\). Hence, (13a) can be transformed into

\[
    \int_{\tilde{\theta}} \delta c g(\theta; \mu) d\theta = \int_{\tilde{\theta}} F \cdot H(\frac{\theta^* - \tilde{\theta}}{\delta}) g(\theta; \mu) d\theta \\
    \Leftrightarrow c \left(1 - G(\tilde{\theta}; \mu, \sigma)\right) = G(\theta^*; \mu, \sigma) - G(\tilde{\theta}; \mu, \sigma) \\
    \Leftrightarrow c \left(1 - \Phi(\frac{\tilde{\theta} - \mu}{\sigma})\right) = \Phi\left(\frac{\theta^* - \mu}{\sigma}\right) - \Phi\left(\frac{\tilde{\theta} - \mu}{\sigma}\right) \\
    \Leftrightarrow \Phi\left(\frac{\tilde{\theta} - \mu}{\sigma}\right) = \frac{F \cdot \Phi(\frac{\theta^* - \mu}{\sigma}) - c}{F - c}
\]
So, \( \Phi(\hat{\theta} - \mu) < \Phi(\theta^* - \mu) \) and hence \( \hat{\theta} < \theta^* \). We have the following comparative statics:

\[
\frac{\partial \hat{\theta}}{\partial \theta^*} = \frac{F}{F - c} \frac{\phi(\theta^* - \mu)}{\phi(\hat{\theta} - \mu)}
\]

\[
\frac{\partial \hat{\theta}}{\partial \mu} = -\frac{F}{F - c} \phi(\theta^* - \mu) + \phi(\hat{\theta} - \mu).
\]

Clearly, \( \frac{\partial \hat{\theta}}{\partial \theta^*} > 0 \). We also prove that \( \frac{\partial \hat{\theta}}{\partial \mu} > 1 \) and \( \frac{\partial \hat{\theta}}{\partial \mu} < 0 \) under general conditions. In fact, if \( \frac{F}{F - c} \phi(\theta^* - \mu) > 1 \), which is true when \( c \) is sufficiently high (in which case \( \hat{\theta} \) is close to being \( -\infty \) and hence \( \phi(\theta^* - \mu) \) is close to being \( 0 \)), we have that \( \frac{\partial \hat{\theta}}{\partial \theta^*} > 1 \) and \( \frac{\partial \hat{\theta}}{\partial \mu} < 0 \).

The comparative results \( \frac{\partial \hat{\theta}}{\partial \theta^*} > 1 \) and \( \frac{\partial \hat{\theta}}{\partial \mu} < 0 \) apply when \( \delta \) is small enough. In fact, by differentiating on both sides of (13a), we can express \( \frac{\partial \hat{\theta}}{\partial \theta^*} \) and \( \frac{\partial \hat{\theta}}{\partial \mu} \) as a continuous function of \( \delta \), so there exists an \( r > 0 \) such that the signs of \( \frac{\partial \hat{\theta}}{\partial \theta^*} \) and \( \frac{\partial \hat{\theta}}{\partial \mu} \) do not change on neighborhood \( B(\delta = 0, r) \).

Next, we analyze (13b). Denote \( H(\theta^* - \hat{\theta}) \) by \( y \) in (13b). So (13b) can be written as

\[
I = \frac{[(1 - c)X - R \cdot F \cdot (1 - y)]}{F \cdot y - c} \pi(\hat{\theta})
\]

(A5)

Clearly, in (A5), \( \frac{\partial I}{\partial \theta^*} > 0 \). We can also prove that \( \frac{\partial I}{\partial y} < 0 \). In fact,

\[
\frac{\partial I}{\partial y} = \frac{RF (y - c) - F [(1 - c)X - R \cdot F \cdot (1 - y)]}{(F \cdot y - c)^2} \pi(\hat{\theta})
\]

\[
= \frac{F \left[ FR - (1 - c)X \right] - Rc}{(F \cdot y - c)^2} \pi(\hat{\theta})
\]

\(< 0
\]

The inequality above is due to (10).

Finally, based on the analysis on (13a) and (13b), we can show the overall comparative statics: \( \frac{\partial I}{\partial \theta^*} > 0 \) and \( \frac{\partial I}{\partial \mu} < 0 \). The first is about \( \frac{\partial I}{\partial \theta^*} > 0 \). An increase in \( \theta^* \) leads to \( \hat{\theta} \) increasing and \( y \) decreasing because \( \frac{\partial \hat{\theta}}{\partial \theta^*} > 1 \) in (13a), which form two channels of forces in (A5) that push up \( I \). The second is about \( \frac{\partial I}{\partial \mu} < 0 \). A decrease in \( \mu \) leads to \( \hat{\theta} \) increasing in (13a), so in (A5) not only \( \hat{\theta} \) increases but also \( y \) decreases; both forces push up \( I \).

**Proof of Proposition 5**

We write the solution in (12a)-(12b) as the reaction function \( \theta^*(I; \mu) \), where \( \mu \) is the mean of public information. We have shown that \( \frac{\partial \theta^*}{\partial \theta^*} > 0 \) and it is easy to show \( \frac{\partial \theta^*}{\partial \mu} < 0 \). We write the
solution in (13a)-(13b) as the reaction function $I(\theta^*; u)$ where $\mu$ is the mean of the asset quality distribution. We have shown that $\frac{\partial I}{\partial \mu} > 0$ and $\frac{\partial I}{\partial \mu} < 0$. Therefore, a negative shock of $\mu$ lead to $\theta^*$ and $I$ spiraling upward. Certainly, $\bar{\theta}_N > \bar{\theta}_N^\varepsilon$, $\theta^*_N > \theta^*_N$ and $I_N > I_{N^\varepsilon}$.

6 References


Freixas, Xavier, B. Parigi, and J. C. Rochet (2000). Systemic risk, interbank relations, and


