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Abstract

We theoretically characterize the behavior of machine learning asset pricing models. We

prove that expected out-of-sample model performance—in terms of SDF Sharpe ratio

and average pricing errors—is improving in model parameterization (or “complexity”).

Our results predict that the best asset pricing models (in terms of expected out-of-

sample performance) have an extremely large number of factors (more than the number

of training observations or base assets). Our empirical findings verify the theoretically

predicted “virtue of complexity” in the cross-section of stock returns and find that the

best model combines tens of thousands of factors.
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1 Introduction

The finance literature has recently seen rapid advances in return prediction and SDF esti-

mation using highly parameterized machine learning (ML) models (see the survey of (Giglio

et al., 2022)). The notable empirical gains of financial ML clash with traditional principles

of statistical modeling in finance that espouse a philosophy of parsimony.1 Until recently, a

clear theoretical justification for employing heavy model parameterizations has been lacking.

(Kelly et al., 2021) (KMZ henceforth) makes a first step in building the theoretical case for

high-dimensional models in financial applications. They prove that under fairly general

conditions, the performance of time series forecasting models—both in terms of forecast

accuracy and market timing strategy returns—is increasing in model complexity (i.e., in the

number of model parameters).

This paper builds upon KMZ in two critical ways. First, we move from a single asset

time series setting to a panel setting with an arbitrary number of risky assets. Second,

we reorient the statistical objective from time series forecasting to stochastic discount factor

(SDF) optimization. These innovations provide a statistical theory of machine learning asset

pricing models. Like KMZ, we study a class of high-dimensional ridge estimators that provide

an analytical link with the random matrix theory necessary to characterize properties of the

SDF estimator when the number of model parameters becomes large. We explicitly derive

an SDF’s expected out-of-sample Sharpe ratio and pricing errors (i.e., its ability to explain

cross-sectional differences in average returns) as a function of its complexity.

The Virtue of Complexity in Asset Pricing Models

Our theoretical development arrives at surprising conclusions about asset pricing model

complexity. The central result is that expected out-of-sample SDF performance, both in

1“It is important, in practice, that we employ the smallest possible number of parameters for adequate
representations” (Box and Jenkins, Time Series Analysis: Forecasting and Control)
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terms of Sharpe ratio and pricing errors, is strictly improving in SDF complexity when

appropriate shrinkage is employed.

To build intuition for this result, imagine a researcher studying N risky assets (with

excess returns Rt+1) in a training sample of T observations. She posits an SDF taking the

form

M⋆
t+1 = 1− w⋆(Xt)

′Rt+1, (1)

noting that this representation is without loss of generality (Hansen and Richard, 1987).2

The researcher has access to conditioning variables Xt that span the time t information set,

but does not know the functional form w⋆ that relates conditioning variables to SDF weights.

To model the SDF, the researcher opts for a “universal approximator” of w⋆, such as a

wide two-layer neural network, knowing that this provides an arbitrarily close approximation

of w⋆ when sufficiently parameterized (assuming suitable regularity on w⋆). This approach

eschews the alternative of fixing a parametric model, which may be parsimonious but likely

introduces specification errors. The approximating model for an individual asset weight w⋆
i,t

is wi,t = λ′Si,t. Specifically, Si,t = f(Xi,t) = (fk(Xi,t))
P
k=1 is a vector of P generated regressors

that result from propagating the raw conditioners Xi,t through the neural network, while λ

is the vector of coefficients that aggregate generated regressors into final SDF weights (see

Figure 1). At last, the approximating SDF model may be written

Mt+1 = 1 − λ′︸︷︷︸
1×P

S ′
t︸︷︷︸

P×N

Rt+1︸︷︷︸
N×1

= 1− λ′Ft+1 , (2)

where wt = Stλ and St is a N × P matrix that stacks together generated features for all

assets. The second equality in (2) highlights that the neural network approximating model

2An SDF can be equivalently represented as its projection on the base assets, with the resulting portfolio
lying on the mean-variance efficient frontier.
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is a high-dimensional factor pricing model. The product Ft+1 = S ′
tRt+1 is a vector of P

factor portfolio returns, one for each nonlinear “characteristic” in S. In turn, λ interprets

the vector of risk prices corresponding to the nonlinear factors.

At this point, the researcher must make a decision. She has already opted out of using a

specific parametric model. But now she must decide how large to make the approximating

model and faces a cost-benefit tradeoff. With a simple approximating model (P << T ),

the model will generally suffer specification bias, limiting its ability to represent the true

SDF. But with P/T close to zero, the variance of the parameter estimates will be controlled.

Additionally, the law of large numbers will apply, so the in-sample performance of the SDF

will be indicative of the expected out-of-sample performance (assuming data stationarity).

On the other hand, the researcher can use a complex approximating model with P/T >>

0. The added flexibility of the complex model allows it to approximate the true SDF better.

The cost, of course, is that a large number of parameters will result in estimates with high

variance. And the rich parameterization will overfit the training data, and thus in-sample

performance will exceed the model’s expected out-of-sample performance (by a potentially

large margin). Keep in mind that for any chosen degree of model complexity, the researcher

has the option of shrinking parameter estimates to manage their variability.

Faced with this dilemma—enjoy the low variance of a parsimonious model, or enjoy

the accurate approximation of a complex model—what course should the researcher take?

The answer we show is that the model with the highest possible complexity maximizes the

expected out-of-sample performance of their SDF. Using an ultra-high dimensional factor

model for the SDF in (2) together with ridge shrinkage, the researcher achieves a higher

expected out-of-sample Sharpe ratio and lower out-of-sample pricing errors than is possible

with fewer parameters.

Comparing a parsimonious parameterization of equation (2) (using, say, P1 parameters)

with a complex specification (with P > P1 parameters) sheds light on why complex models
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are beneficial in general, and also why they tend to dominate small parametric specifications.

When employing a complex model, the researcher decides on model shrinkage after seeing

the training data. The complex model casts a wide net in model specification to detect which

of the many (P ) generated features are most effective. Then, through ridge shrinkage, the

researcher restricts the effective parameterization by proportionally scaling down coefficients

on all features. This accompaniment of ridge shrinkage allows the researcher to control the

variance of the complex model.

Absent any prior knowledge of the functional form of w⋆, a researcher’s specification

choice for a parsimonious model is analogous to drawing a small random subset P1 from

the larger set of P generated features and discarding the rest. Here, the researcher con-

trols parameter variance by imposing parsimony, which can be considered another form

of shrinkage. In essence, a parsimonious specification shrinks the model before seeing the

data (by forcing P − P1 of the coefficients to precisely zero). It is certainly possible

that a researcher can get lucky and select a high-performance parsimonious specification

that beats the complex model. But you cannot be lucky on average. On average, the

complex model is more informed and, thus, the better bet. It achieves its variance reduction

more judiciously because it gathers information from the training data before deciding on

(shrunken) parameter estimates.

Our main theoretical contribution—proving the virtue of complexity in asset pricing

models—has important research implications. Unless the researcher knows the correct func-

tional form a priori (which requires heroic assumptions, particularly in complicated systems

like financial markets), complex models provide a more reliable out-of-sample understanding

of the cross-section of returns. In the lingua franca of asset pricing, forty years of research

have produced a “factor zoo” of a few hundred characteristic-based factors. Our theory

shows that expanding this small zoo into a teeming Noah’s ark of factors is optimal by

transforming raw asset characteristics into a rich variety of nonlinear signals (buttressed by
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appropriate shrinkage). Doing so improves the out-of-sample Sharpe ratio of the SDF and

reduces out-of-sample pricing errors.

From a technical standpoint, we have overcome a number of new theoretical hurdles rela-

tive to KMZ. The panel aspect of the problem means that the behavior of high-dimensional

models has some fundamental differences versus the time series problem of KMZ. In time

series regression, the random matrix behavior of the time series covariance of signals dictates

the behavior of complex models and associated trading portfolios. In the panel problem,

behavior is determined by time series properties and equally by the covariance of signals

across assets. Our analysis is significantly more involved than that in KMZ. It has required

the development of novel mathematical techniques to tackle the ultra-high-dimensional model

where the number of stocks, periods, and characteristics per stock is comparably large. In

this case, describing the joint behavior of estimated factor risk premia and factor covariances

presents a significant challenge that we overcome. First, we show that the managed portfolio

approach is indeed efficient in recovering the conditionally efficient portfolio without the need

of estimating the conditional covariance matrix of stock returns. We prove that the out-of-

sample performance of our managed-portfolio-based SDF only depends on two objects: The

eigenvalue distribution of the signal covariance matrix and the distribution of Sharpe ratios

of factor principal components. Perhaps surprisingly, neither the true conditional covariance

of stock returns nor the structure of the latent factors driving those returns impacts the

SDF performance in the high-dimensional regime. Second, we formalize the known intuition

in machine learning that over-parametrized models have an implicit regularization effect: In

the interpolation regime, having more degrees of freedom allows the machine learning model

to choose better, more regular (e.g., smaller norms, less subject to outliers) interpolators.

See, e.g., (Belkin, 2021). This paper provides an exact mathematical formalization for this

intuition for ridge-penalized portfolios and SDFs in the high-complexity regime. This implicit
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regularization is responsible for the virtue of complexity: As we increase complexity, the

high-dimensional ridge regularizes more, improving the out-of-sample performance.

Empirical Findings

We design data experiments that mirror our theoretical environment in order to evaluate

the role of complexity in the performance of empirical asset pricing models. We study the

sample of monthly US stocks and a fixed set of 110 stock-level predictors from (Jensen

et al., Forthcoming), which correspond to the raw conditioning variables Xt in (1). To

bring our theory to the data, we need to study models ranging from parsimonious to highly

complex while holding the information set fixed. For this, we adapt the machine learning

method of random features regression (as used in KMZ) to the SDF estimation problem.

This converts the fixed set of 110 raw stock characteristics into any desired number P of

“random features.” The random features are an augmented set of stock-level characteristics

that make flexible use of the information in the raw data by including an arbitrarily rich

set of nonlinear transformations of the raw variables. Random features are equivalent to the

features engineered in the hidden layer of a wide two-layer neural network.3 A convenient fact

of using random features to vary the complexity of the empirical model is that conditioning

information from all of the raw features Xt is distributed impartially to each of the random

features St. As a result, each random feature has an ex-ante identical expected contribution

to the overall conditioning information in the complex model. An implication is that the

order of the random features is irrelevant—the first random feature is on the exact same

footing as the last in terms of its predictive potential—so as we vary model size P from one

hundred to a hundred thousand, it doesn’t matter how we work our way through the list

of features. In short, the key point of our random features SDF formulation is that we can

3In the first layer of the network, fixed weights (randomly drawn, as opposed to estimated) aggregate the
raw inputs Xt which are then fed through a nonlinear activation function to produce the “random features”
St. In the second layer, the random features are combined with estimated weights to optimize the SDF
performance objective (with ridge shrinkage).
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evaluate the empirical effect of complexity by simply varying the number of random features

in the model.

We summarize this through the main empirical results. First, we document an empirical

virtue of complexity in pricing the cross-section of returns. We find that realized out-

of-sample performance of the empirical SDF is generally increasing in model complexity.

Increasing the number of model parameters consistently raises the out-of-sample SDF Sharpe

ratio and reduces its out-of-sample pricing errors in a manner that closely tracks our theo-

retical predictions. Our empirical “VOC (virtue of complexity) curves,” which plot model

performance as a function of model complexity, data support the intuition outlined above

that the empirical gains from incorporating nonlinearities are large and that improvements

in approximation accuracy from larger P dominate the statistical costs of estimating more

parameters. Furthermore, our high-complexity model outperforms standard benchmark

models (like the Fama-French-Carhart six-factor model) by a large margin.

The virtue of complexity in our empirical asset pricing models appears highly robust.

It is not driven by any particular subset of the stock universe. We find nearly identical

VOC curves when SDFs are estimated from subsets of the broader sample (for example,

among stocks broken into mega, large, small, and micro capitalization groups). Furthermore,

contrary to existing critiques of machine learning models arguing that they produce infeasible

trading strategies, our results are robust to excluding fast signals: Even when we remove

the 20% of fastest moving characteristics (including short-term reversal and idiosyncratic

volatility), the performance of the high-complexity model is barely affected.

Next, recent work by (Kozak et al., 2020) suggests that a successful SDF does not require

many factors per se because the asset pricing properties of those factors are adequately

summarized by a small number of their principal components (PCs).4 Their “sparse PC-

based SDF” cleverly avoids model complexity through a dimension reduction of the factors.

4Relatedly, papers such as (Kelly et al., 2020; Lettau and Pelger, 2020; Gu et al., 2020a) demonstrate
the success of dimension reduction methods when estimating asset pricing models with a large number of
candidate factors.
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This begs the question: Can the complex models we study be similarly reduced to achieve

similar performance with potentially many fewer parameters? We show that this is not

possible. For every model size P , we consider replacing the P generated factors with a smaller

number K of their principal components. We show that dimension reduction significantly

impaired model performance across all choices of P and K. In other words, attempting to

reduce model complexity inevitably sacrifices model performance. Two important properties

of high-dimensional models drive this effect. First, the eigenvalue distribution of the factor

covariance matrix is so dense that even very large eigenvalues get absorbed by the bulk of

the spectrum, making it impossible to estimate the corresponding PCs efficiently. Second,

perhaps surprisingly, contrary to the conventional wisdom, even low-variance PCs have a

significant Sharpe ratio and, hence, dropping them leads to a drop in performance. While

this seems counter-intuitive from the point of view of arbitrage pricing theory, these high

Sharpe ratios are infeasible to achieve because low-variance PCs are impossible to estimate.

Thus, we should include all of them in the portfolio.

Literature

Our paper is related to several strands of literature about the growing “factor zoo” (see

(Cochrane, 2011), (Harvey et al., 2016), (McLean and Pontiff, 2016), (Hou et al., 2020),

(Feng et al., 2020), (Jensen et al., Forthcoming)) and modern statistical and machine learning

methods for analyzing it. See (Giglio et al., 2022) for a recent overview.

Many papers in this literature focus on predicting asset returns using complex, non-

linear models; see (Moritz and Zimmermann, 2016), (Chinco et al., 2019), (Han et al., 2019),

(Gu et al., 2020b), (Kozak et al., 2020), (Freyberger et al., 2020), (Avramov et al., 2021),

(Guijarro-Ordonez et al., 2021), (Leippold et al., 2022), (Didisheim et al., 2022), and (Kelly

et al., 2022). This approach is agnostic about the link between expected returns and the
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return (conditional) covariance structure, which is necessary for constructing the stochastic

discount factor.

Another stream of literature focuses on using machine learning methods to directly

construct the SDF from characteristics-based factors, focusing on the explicit link between

the pricing kernel and the conditionally efficient portfolio. See, for example, (Chen et al.,

2019; Bryzgalova et al., 2020; Liu et al., 2020). Our paper provides a theoretical foundation

for this approach. The idea of using principal components of characteristics-based factors to

shrink the cross-section of returns is exploited in (Kelly et al., 2020), (Kozak et al., 2018),

(Kozak et al., 2020), (Lettau and Pelger, 2020), and (Giglio and Xiu, 2021), who argue

that retaining only a few top principal components is sufficient to explain the cross-section

of returns. See also (Gagliardini et al., 2016). As we explain above, our empirical results

suggest that PC-sparse SDFs are inefficient and cannot capture the nature of non-linearities

in the true SDF.

(Kelly et al., 2020) introduce an econometric framework where stock characteristics are

explicitly linked to risk because betas concerning latent factors are (linear) functions of

characteristics. A series of recent papers extend the analysis of (Kelly et al., 2020) to the

case of a non-linear dependence of betas on characteristics. See, e.g., (Chen et al., 2021),

(Fan et al., 2022), and (Ma, 2021).5 All these papers provide evidence that introducing

nonlinearities into the latent factor betas improves pricing efficiency. Motivated by the

dangers of overfitting, and in stark contrast to our paper, all these papers operate in a

low-complexity regime where the number of parameters is small relative to the panel size.

Under such low complexity conditions, these papers prove that the true conditional pricing

kernel can be efficiently estimated. In this paper, we show that, despite the true SDF being

impossible to estimate, high-complexity models do a great job of extracting non-linearities

due to the virtue of complexity.

Our results are consistent with the recent findings of (Lettau and Pelger, 2020) and

5See also (Gagliardini and Ma, 2019) and (Gagliardini et al., 2020) for an overview.
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(Bryzgalova et al., 2023)) who argue that many asset pricing factors are weak (see also

(Giglio et al., 2021)); that is, factor risk premia are too small to be efficiently estimated even

when the number of assets in the cross-section is large. Our paper provides empirical evidence

for the pervasive nature of the weak factor hypothesis. While conventional wisdom suggests

that a few strong factors dominate the cross-section, our findings offer an alternative picture.

We argue that the conditional expected returns might be determined by tens of thousands of

weak factors. The virtue of complexity is the most direct illustration of this empirical fact:

Every weak factor adds a little bit to the out-of-sample performance, but their joint effect

is very large.

As in (Kozak et al., 2020), we construct the feasible proxy for the SDF from the maximal

Sharpe ratio portfolio of factors. The problem of finding the highest Sharpe ratio combination

of characteristics-based factors is equivalent to the problem of finding the optimal parametric

portfolio policy in the language of (Brandt et al., 2009). This point of view is exploited in

(DeMiguel et al., 2020) and (Jensen et al., 2022) (taking transaction costs into account), in

(Simon et al., 2022) (with parametric portfolio weights based on deep learning), in (Chen et

al., 2019) using adversarial training, and in (Cong et al., 2021) using reinforcement learning.

Our results provide a theoretical basis for the empirical analysis performed in these papers.

Our paper also belongs to the emergent literature about the limits to learning: The fact

that, in high-dimensional settings, asset pricing models cannot be efficiently estimated, and

there exists a wedge between the feasible and infeasible model performances. See, (Da et

al., 2022) and (Didisheim et al., 2022). In this paper, we explicitly compute the complexity

wedge for the SDF, offering a framework for a deeper theoretical understanding of ultra-

high-dimensional models for conditional SDFs.
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2 Complex Pricing Kernel

In this section, we lay down our assumptions and demonstrate how a high-dimensional

factor model is equivalent to a two-layer neural network model for the SDF. We start with

the following assumption about the relationship between stock returns and characteristics.6

Assumption 1 (Complex Pricing Kernel) There are N assets with excess returns Rt+1 =

(Ri,t+1)
N
i=1. Each asset i has a vector of characteristics Xi,t ∈ Rd, and there exists a non-linear

function w : Rd → R such that

Mt,t+1 ≡ 1 −
N∑
i=1

w∗(Xi,t)Ri,t+1 , (3)

is a tradable pricing kernel, so that the excess returns satisfy7

Et[Ri,t+1Mt,t+1] = 0, i = 1, · · · , N . (4)

The random matrices Xt ∈ RN×d and random vectors Rt+1 ∈ RN are independent and

identically distributed over time.

The nonlinearity of w∗ makes the dependence of the SDF on characteristics complex

because it drastically increases the potential dimensionality of the function spaces needed

to model w∗(X) in (3). We model w∗(X) as belonging to a parametric family of non-linear

functions (such as, e.g., neural networks of a given depth): w∗(X) = w∗(X; θ), θ ∈ RP ,

and then relate model complexity to the number P of parameters needed to characterize the

nonlinearity. The larger P is, the more complex the model. When w∗(X; θ) has enough

6In Appendix B, we describe a class of data-generating processes consistent with the pricing kernel (3).
7The assumption that the weight of stock i only depends on the characteristics of stock i can be easily

relaxed. For example, we may assume to include macroeconomic variables into Xi,t for each stock i. In
the Appendix B, we provide a setting where the true pricing kernel has approximately the form (3), up to
several terms involving symmetric functions of Xi,t across stocks. As we show in our proofs, these terms are
asymptotically negligible.
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expressive power, the family w∗(X; θ) becomes a universal approximator, allowing us to

generate any form of non-linearity. In this paper, we focus on a particular parametric class

of w∗: Namely, we assume that w∗ can be represented as a combination of features,

w∗(Xi,t) =
P∑
ℓ=1

λℓ Si,ℓ,t, k = 1, · · · , q , (5)

where

Si,ℓ,t = fℓ(Xi,t), ℓ = 1, · · · , P (6)

are given by non-linear transformations fℓ(·) of the original covariates Xt. It is known that

the specification (5) has a very large expressive power: With a properly chosen basis of

nonlinear functions fℓ, any sufficiently regular function w can be approximated by a linear

expression (5). For example, fℓ(·) could be chosen as a spline basis, as in (Chen et al., 2021),

or deep neural networks (as in (Fan et al., 2022)). In our empirical analysis, we choose

fℓ(·) to be random features (see (Kelly et al., 2021) and Section 6 for details), in which case

(5) is equivalent to approximating w∗(X) with a two-layer neural network (see Figure 1).

Independent of the choice of the fℓ(·), we need a large number P of nonlinear characteristics

Sℓ in (6) to be able to approximate a generic non-linear function w∗.

Let

Fk,t+1 =
N∑
i=1

Si,k,tRi,t+1 (7)

be the managed portfolios. Henceforth, we refer to Fk,t+1, k = 1, · · · , P, as factors. In the
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wi,t=λ
′Si,t

Si,t=f(Xi,t)

Xi,t

Figure 1: This diagram illustrates how (5) is equivalent to a two-layer neural network with
one input layer, one hidden layer, and a single-neuron output layer.

matrix notation,

Ft+1 = S ′
tRt+1 ∈ RP . (8)

Substituting (5) into (3), we arrive at the factor representation for the SDF:

Mt+1 = 1 − λ′S ′
tRt+1 = 1 − F ′

t+1λ , (9)

and the pricing equation (4) implies

0 =︸︷︷︸
(4)

S ′
tEt[Rt+1Mt+1] =︸︷︷︸

(9)

Et[S
′
tRt+1(1 − λ′Ft+1)]

=︸︷︷︸
(8)

Et[Ft+1(1− F ′
t+1λ)] = Et[Ft+1] − Et[Ft+1F

′
t+1]λ ,

(10)

and hence

E[Ft+1] = E[Ft+1F
′
t+1]λ , (11)
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implying that

λ = E[FF ′]−1E[F ] . (12)

This calculation is based on a key observation: The factor structure of the SDF reduces

the problem of computing the conditional SDF to an unconditional problem. Equivalently,

managed portfolios efficiently incorporate all conditional information.8 We will use

Ψ = E[FF ′] − E[F ]E[F ]′ (13)

to denote the variance-covariance matrix of factors. This matrix’s eigenvalue decomposition

captures the factors’ risk structure and will play a key role in our analysis. Finally, we will

use

Rinfeas
T+1 = λ′Ft+1 . (14)

to denote the infeasible efficient portfolio of an investor with access to an infinite amount of

data.

3 Feasible Factor Portfolios, Ridge, and Random Matrix Theory

The principal object of our studies is the finite sample counterpart of the efficient portfolio

(12), defined as the in-sample solution to a penalized version of the (Britten-Jones, 1999)

regression

λ̂INS(z) = argmin
λ̂

{
T∑
t=1

(1− λ̂′Ft)
2 + z ∥λ̂∥2}, (15)

8See, Appendix B for technical details showing that this fact indeed holds for a large class of data-
generating processes for stock returns and characteristics.
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where z is the ridge penalty, used as a regularization to prevent in-sample over-fitting. The

subscript INS emphasizes the in-sample nature of λ̂INS. The solution to (15) is given by

λ̂INS(z) = (zI +BT )
−1F̄T , (16)

where

F̄T =
1

T

T∑
t=1

Ft ∈ RP , (17)

and

BT =
1

T

T∑
t=1

FtF
′
t ∈ RP×P (18)

is the sample second moment matrix of factors. We also define the finite sample (feasible)

counterpart of the efficient portfolio return (25):

RF
T+1(z) = λ̂INS(z)

′FT+1 . (19)

Intuitively, we expect that, as T increases, finite sample estimates converge to their popula-

tion values, and in-sample quantities converge to out-of-sample quantities. This assumption

has governed most of the existing asset pricing literature, and our paper could have been

considerably shorter under it. Alas, contrary to conventional wisdom, when P/T ̸→ 0, we

have BT ̸≈ E[FF ′], F̄T ̸≈ E[F ], and

(zI +BT )
−1F̄T ̸≈ (zI + E[FF ′])−1E[F ] . (20)

The counter-intuitive reality of high-dimensional portfolios renders much of the standard

statistical arsenal obsolete in the high-complexity regime. Fortunately, another branch of
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mathematics allows us to study the properties of equation (19): Random Matrix Theory

(RMT). As the name suggests, this branch of mathematics discusses the theoretical proper-

ties of large random matrices, such as the P×P matrix BT .While some of RMT’s predictions

are complex, its key insight is remarkably simple: most of the theoretical properties of the

quantities, such as (19), can be expressed in quantities known as the Stieltjes transforms

that we now introduce.9

We consider a sequence of models indexed by P → ∞ Each model is characterized by a

covariance matrix Ψ = ΨP in (13) and a vector of risk premia λ = λP . The only assumption

we make is that both ΨP and λP are uniformly bounded as P → ∞. We then introduce the

Stieltjes transforms for Ψ and BT ,

mΨ(−z) = lim
P→∞

1

P
tr
(
(Ψ + zI)−1

)
m(−z; c) = lim

P→∞

1

P
tr
(
(BT + zI)−1

)
,

(21)

provided the limits exist.10 Since (Ψ + zI)−1 and (BT + zI)−1 are the regularized inverse

covariance matrices appearing in the two portfolios (20), the two Stieltjes transforms (21)

capture the total amount of risk reduction achieved by inverting these matrices for a given

level of ridge penalty. We will also need the quantity

A(z) = lim
P→∞

E[F ]′(zI +Ψ)−1E[F ] , (22)

describing the dependence of the expected returns of the infeasible portfolio, Ft+1(zI +

E[FF ′])−1E[F ], on the shrinkage parameter z.

9See KMZ for applications of the Stieltjes transform to high-dimensional regression problems.
10As KMZ show, both limits exist when the eigenvalue distribution of Ψ weakly converges to a limit

distribution as P → ∞. Furthermore, m(z; c) indeed only depends on z and c.
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3.1 Implicit Regularization and the Expected Return of the Efficient Portfolio

We will need an additional technical condition to ensure we can apply RMT to factors.

Assumption 2 We have that

1

P

(
F ′
tAPFt − tr(ΨAP )

)
→ 0 (23)

in L2 for any uniformly bounded sequence of matrices AP that are independent of Ft. In

particular, the random variables 1
P
F ′
tAPFt converge to a non-random limit in probability.

Assumption 2 plays the role of the law of large numbers for the cross-section of factors.

While in standard applications of the law of large numbers, we estimate quantities by

averaging over multiple observations (time), the high complexity limit as P → ∞ allows us

to compute non-random averages in the cross-section of factors even though the realization

of the factor vector Ft at each period t is random. Indeed, using the identity F ′APFt =

tr(APFtF
′
t), we can argue that, when P is large enough, P−1FtF

′
t ≈ P−1Ψ and, hence,

P−1 tr(APFtF
′
t) ≈ P−1 tr(APΨ). (24)

Assumption 2 formalizes this intuition.11 We now introduce a key object that will be crucial

for understanding the out-of-sample properties of factor portfolios.

So far, we have defined two important portfolios: The infeasible portfolio, only accessible

when the true moments of the cross-section of factors are known (as given in equation

(25)), and the feasible (penalized) portfolio, which can be estimated in finite samples (as

given in equation (19)). To understand the impact of complexity on the feasible portfolio

11Establishing (23) for managed portfolios (8) is highly non-trivial. We prove it in the Appendix, Lemma
11. Its proof is extremely complex and has required developing novel techniques for dealing with a joint
limit of large N , large T , and large P .
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performance, we need to introduce a third one: The penalized infeasible portfolio, given by

Rinfeas
T+1 (z) = λ(z)′Ft+1, where λ(z) = (E[FF ′] + zI)−1E[F ]. (25)

Note that the infeasible portfolio (25) is a special case of the penalized infeasible portfolio,

with Rinfeas
T+1 = Rinfeas

T+1 (0). Thus, this portfolio can be thought of as an intermediary between

the infeasible portfolio and its feasible counterpart. Intuitively, the penalized infeasible

portfolio always underperforms the true infeasible portfolio, as penalization is unnecessary

when the true moments are known. See Lemma 2 the appendix.

As we show below, an intricate link exists between the expected return of the feasible

portfolio and the expected return of the penalized infeasible portfolio. For any degree c of

the complexity of the factor model and any penalization of the feasible portfolio z, there

exists a Z∗(z; c) > z, such that E[RF
T+1(z)] = E[Rinfeas

T+1 (Z∗(z; c))]. Remarkably, we can

characterize Z∗(z; c) in close form. The following is true.

Theorem 1 In the limit as P, T → ∞, P/T → c, we have

E[RF
T+1(z)] → R1(z; c) = Rinfeas

1 (Z∗(z; c)) , (26)

where Rinfeas
1 (z) = E[Rinfeas

T+1 (z)] = R1(z; 0) = A(z)
1+A(z)

is the expected return on the

infeasible portfolio.12 The function Z∗(z; c) is the effective shrinkage given by

Z∗(z; c) = z (1 + ξ(z; c)) ∈ (z, z + c) , (27)

with

ξ(z; c) = lim
P, T→∞, P/T→c

1

T
tr((zI +BT )

−1Ψ) . (28)

12This return corresponds the case when the number of observations T is large relative to P , so that
c = P/T → 0.
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Furthermore, Z∗(z; c) is monotone increasing in z and c. In the ridgeless limit as z → 0, we

have

Z∗(z; c) →


0, c < 1

1/m̃(c), c > 1

(29)

where m̃(c) > 0 is the unique positive solution to

c− 1 =

∫ dH(x)
m̃(1+m̃ x)∫ xdH(x)
1+m̃ x

, (30)

and

To understand the intuition behind the formula (26), consider the effect of increasing the

estimation window from T − 1 to T by adding another observation FT to our estimation of

the in-sample moments in (16). By the Sherman-Morrison formula,13

(zI +BT )
−1FT ≈︸︷︷︸

(129)

1

1 + ξ(z; c)
(zI +BT−1)

−1FT . (31)

When complexity c = P/T is close to zero, so is ξ(z; c). However, with high complexity, the

factor 1
1+ξ(z;c)

acts as an effective shrinkage, dampening the effect of each new observation

FT on the estimation of (16). Theorem 1 formalizes the idea of implicit regularization: In

the high complexity regime, E[RF
T+1(z)] behaves like E[Rinfeas

T+1 (z)], but with z replaced by

Z∗(z; c). Since Z∗(z; c) ≥ z, high dimensional models shrink (regularize) eigenvalues more.

Thus, contrary to conventional wisdom,

E[RF
T+1(z)] = E[F ′

T+1(zI +BT )
−1F̄T ]

≈ E[F ]′(Z∗(z; c)I + E[FF ′])−1E[F ] < E[F ]′(zI + E[FF ′])−1E[F ] .
(32)

13(zI +BT )
−1FT = 1

1+ 1
T F ′

T (zI+BT−1)−1FT
(zI +BT−1)

−1FT , see (99) in the Appendix.
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Strikingly, in the complex regime when c > 1, (29) implies that Z∗(z; c) is uniformly bounded

away from zero. Thus, even in the ridgeless limit when z → 0, the estimated efficient portfolio

(19) performs an implicit regularization of the highly degenerate P × P covariance matrix

BT that has rank at most T < P , leading to a significant drop in out-of-sample expected

returns: When with z = 0, expected returns behave like those for the infeasible portfolio

with shrinkage 1/m̃(c).

3.2 The Risk of High-Complexity Efficient Portfolios

We will now discuss the second moment of the feasible portfolio, RF
T+1(z). To provide

intuition, we first consider the corner case where E[F ] = 0 and E[F 2
k,t+1] ̸= 0 for all k =

1, · · · , P. In this extreme scenario, every factor has an expected return of zero and a non-zero

variance. Consequently, the mean-variance efficient strategy involves buying no assets, i.e.,

λ = 0. In the low complexity regime where P/T ≈ 0, the feasible portfolio converges to this

solution: λ̂(z) ≈ 0 for all z. However, in the high complexity case, where an agent has a

finite number of observations T and P/T > 0, the total estimation error aggregated across

all factors can be large. Despite approximately estimating E[Fk,t+1] with an error of the

order 1/T 1/2 for each fixed k, the total error for estimating E[F ] ∈ RP can be significant. In

other words, when P/T > 0, the feasible portfolio will have a non-zero variance even when

the data has zero predictability. The following is true.

Proposition 2 (Estimation Risk) Suppose that E[F ] = 0. Then,

lim
P→∞, P/T→c

E[RF
t+1(z)] = 0 , (33)

whereas

G(z; c) = lim
P→∞, P/T→c

E[(RF
t+1(z))

2] = (zξ(z; c))′ > 0 . (34)
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G(z; c) is monotone decreasing in z and increasing in c, and satisfies G(z; c) ≤ c z−2 .

To enhance intuition, we consider a simple portfolio strategy that invests proportionally

to the historical mean returns, with portfolio weights’ vector given by F̄ ′
T (see (17)):

RM
t+1 = F̄ ′

T FT+1 . (35)

Then, under the assumption that E[F ] = 0,

E[RM
t+1] = E[F̄ ′

T FT+1] = E[F̄T ]E[FT+1] = 0 . (36)

Yet,

E[(RM
t+1)

2] = E[(F̄ ′
T FT+1)

2] = trE[F̄T F̄
′
TFT+1F

′
T+1]

= trE[F̄T F̄
′
TΨ] =

1

T 2

∑
t

trE[FtF
′
tΨ] =

1

T
tr(Ψ2) ≥ 0

(37)

As we explain in Proposition 2, numerous small estimation errors accumulate, creating

significant risk for the portfolio. The case where Ψ = I and 1
T
tr(Ψ2) = P/T → c highlights

how these errors accumulate across P and increase with complexity.

Using the insight gained from the simpler case of E[F ] = 0, we can now describe the risk

of high-complexity portfolios for the general case where E[F ] ̸= 0.

Theorem 3 We have

E[(RF
T+1(z))

2] → Rinfeas
2 (Z∗(z; c))︸ ︷︷ ︸

implicit regularization

+ G(z; c)(1− 2Rinfeas
1 (Z∗(z; c)) +Rinfeas

2 (Z∗(z; c)))︸ ︷︷ ︸
estimation risk

,

(38)
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where

Rinfeas
2 (z) = R2(z; 0) =

d

dz

(
zA(z)

1 + A(z)

)
(39)

is the second moment of the return on the infeasible portfolio, F ′
T+1(zI + E[FF ′])−1E[F ],

estimated using T = ∞.

Theorem 3 shows that the variance of the feasible portfolio can be characterized in two

terms. The first term, Rinfeas
2 (Z∗(z; c)), is the second moment of the infeasible portfolio

with implicit regularization provided by Z∗(z; c), similarly to Theorem 26. Through this

regularization, complexity reduces risk and may improve the risk-return tradeoff. At the

same time, the risk of the feasible portfolio is impacted by the estimation risk, G(z; c),

characterized in Proposition 2. Estimation risk is bounded from above by complexity:

By Proposition 2, it only depends on the eigenvalue distribution of Ψ, stays positive even

when E[F ] = 0, and satisfies G(z; c) ≤ cz−2. This surprising tradeoff between implicit

regularization and estimation risk is the quintessence of complexity and its impact on out-

of-sample portfolio performance.

Theorem 3 also allows us to derive the complexity wedge, given by the gap in performance

between the feasible and infeasible portfolio due to complexity.

Corollary 4 (Complexity Wedge) Let SR(z; c) = limE[RF
T+1(z)]/(E[(R

F
T+1(z))

2])1/2 be

the asymptotic Sharpe ratio of the feasible efficient portfolio. Then,

1

SR2(z; c)
=

1

SR2
infeas(Z∗(z; c))︸ ︷︷ ︸

implicit regularization

+ G(z; c)
1− 2Rinfeas

1 (Z∗(z; c)) +Rinfeas
2 (Z∗(z; c))

(Rinfeas
1 (Z∗(z; c)))2︸ ︷︷ ︸

estimation risk

(40)

As we explain above, the infeasible Sharpe ratio, SRinfeas(z), is monotone decreasing

in z. Corollary 4 shows how both the implicit regularization and the estimation risk create

a wedge between feasible and infeasible performance. Developing econometric techniques
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for estimating the complexity wedge and its link to the true nature of the data generating

process is an important direction for future research.

4 Mis-Specified Models and the Virtue of Complexity

So far, we have implicitly assumed that formula (9) is a correctly specified model for the

SDF. Equivalently, stock returns have an exact, P -dimensional factor structure given by

factors Ft with unknown risk premia that we attempt to learn. We now explore a more

realistic setting where only a fraction q = P1

P
of factors is observable, with some P1 < P.

The subset of factors, Ft+1(q) = (Fi,t+1)
P1
i=1, has a covariance matrix Ψ(q) ∈ RP1×P1 . We then

define

λ̂INS(z; q) = (zI +BT (q))
−1F̄T (q) , (41)

where

F̄T (q) =
1

T

T∑
t=1

Ft(q) ∈ RP1 , (42)

and

BT (q) =
1

T

T∑
t=1

Ft(q)Ft(q)
′ ∈ RP1×P1 . (43)

In this case, all of the above expressions in Theorems 1 and 3 hold true, with the key

functions A(z; q) and ξ(z; c; q) depending explicitly on q through E[F (q)] and the eigenvalue

distribution of Ψ(q). It is straightforward to show that A(z; q) is always monotone increasing

in q: For the infeasible portfolio, having more factors is always beneficial and always improves

the infeasible maximal Sharpe ratio. In the high-complexity case, this improvement only

holds when the marginal benefit of an additional factor is large enough to compensate for
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the higher estimation error. The following result is an analog of the virtue of complexity

(VoC) principle of KMZ for factor portfolios.

Theorem 5 (The Virtue of Complexity) Suppose that either Ψ = I or dGθ/dG is uni-

form for any q, and that dG does not depend on q. Suppose also that ∥θ∥2 is small. Then,

the out-of-sample Sharpe ratio of the feasible portfolio is monotone, increasing in q.

Recall that P1 represents both the number of factors and the number of parameters in our

model. According to Theorem 5, as q = P1/P and model complexity P1/T increase, so does

the model performance. This highly counterintuitive result suggests that the zoo of factors

should be expanded rather than controlled. Equivalently, rather than restricting the weights

w∗(X) in (3), we should expand their parameterization, saturating it with conditioning

information.

It is also worth noting that while the sufficient conditions for the Virtue of Complexity

(VoC) in theorem 5 are strong, our extensive numerical simulations and empirical results

suggest that these conditions are unnecessary, and VoC is a more widespread phenomenon.

5 Pricing Errors

To complete our discussion of stochastic discount factors’ performance, we now analyze

asset pricing errors using the (Hansen and Jagannathan, 1997) (HJ) distance. In the high

complexity regime, exact details of computing the distance are important, including how

we define the HJ distance weighting matrix. Consistent with the fact that we test the

efficiency of a portfolio based on its out-of-sample performance, pricing errors also need to

be computed out-of-sample (OOS) using the out-of-sample factor moments. The distinction

between in- and out-of-sample performance is an essential ingredient in the analysis of any

high-complexity model. See, e.g., (Martin and Nagel, 2021) for a related discussion.
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Let EOOS[·] denote out-of-sample averages:

EOOS[X] =
1

TOOS

∑
t∈(T,T+TOOS ]

Xt . (44)

We will also need

F̄OOS = EOOS[F ] ∈ RP , BOOS = EOOS[FF
′] ∈ RP×P . (45)

Then, as in the previous section, we consider an expanding set of factor models indexed by

q ∈ (0, 1), and define

Mt(z) = 1 − RF
t (z; q), with R

F
t (z; q) = λ̂INS(z; q)

′Ft(q) (46)

and λ̂INS(z; q) ∈ RP1 from (41), with P1 < P. We evaluate the ability of this P1-factor SDF

to price all P factors by computing the OOS pricing error vector:

EOOS(z; q) =
1

TOOS

∑
t∈(T,T+TOOS ]

FtMt(z; q) ∈ RP . (47)

The HJ distance is then given by

DHJ
OOS(z; q) = EOOS(z; q)

′B+
OOS EOOS(z; q) , (48)

where B+
OOS is the Moore-Penrose quasi-inverse of the highly degenerate (of rank≤ TOOS)

matrix BOOS. The following result follows by direct calculation.

Proposition 6 We have

DHJ
OOS(z; q) − F̄ ′

OOSB
−1
OOSF̄OOS = −2EOOS[R

F (z; q)] + EOOS[(R
F (z; q))2] (49)
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When P > TOOS and both are sufficiently large, we have

F̄ ′
OOSB

−1
OOSF̄OOS ≈ 1 (50)

and hence

DHJ
OOS(z; q) ≈ EOOS[(1−Mt(z; q))

2] . (51)

In particular, pricing errors are independent of the set of test factors.

Proposition 6 shows how the HJ distance is directly linked to the OOS performance of

the efficient portfolio. In particular, Theorems 1 and 3 allow us to derive explicit asymptotic

expressions for this distance and obtain an analog of the VoC result from Theorem 5.

Theorem 7 (The Virtue of Complexity for Pricing Errors) Suppose that either Ψ =

I or dGθ/dG is uniform for any q, and that dG does not depend on q. Suppose also that ∥θ∥2

is small. Then, the out-of-sample HJ Distance ratio is monotone, decreasing in q.

6 Empirics

Our monthly frequency dataset comes from (Jensen et al., Forthcoming) and contains 153

characteristics and realized returns for US publicly traded stocks from 1963-01-31 to 2019-

12-31. Following (Jensen et al., Forthcoming).

Many of the 153 characteristics from (Jensen et al., Forthcoming) have significant frac-

tions of missing values, especially in the early parts of the sample. For this reason, we first

pre-select 130 characteristics with the smallest percentage of missing values. This ensures

that the characteristics composition is more homogeneous over time. Among those 130

characteristics, we select and exclude 20 with the highest turnover.14 We do this on purpose

14See Appendix ?? the definition of turnover and the list of these excluded characteristics.
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to address the existing critiques based on the apparent tendency of machine learning models

to generate extremely fast-varying and hence hard-to-trade signals (see, e.g., Chinco et al.

(2019), and Jensen et al. (2022) for a potential remedy based on machine learning methods

that properly account for trading costs). This leaves us with d = 110 characteristics. Then,

for each date, we only keep stocks for which less than 30% characteristic values are missing,

ensuring that, on each date, each stock has at least 77 characteristics as an input to our

machine learning models. In the sequel, we use Nt to denote the number of such “eligible”

stocks available at time t.

Every date, for each characteristic k = 1, · · · , d, there are nt(k) stocks with non-missing

values cross-sectionally rank these characteristics (not including the missing values), replac-

ing them with their rank between 0 and nt(k). We then divide this rank by nt(k) and

subtract 0.5, to get a normalized rank in [−0.5, 0.5]. We then fill in missing values of the

k-th characteristic of the remaining Nt − nt(k) stocks with zeros. This way, we obtain a

panel of characteristics Xt = (Xi,k,t)i,k ∈ RNt×d, d = 110, taking values in [−0.5, 0.5] and we

assume a pricing kernel of the form (3).

We now define the P >> d non-linear features (6) that serve as an input to our pricing

kernel expansion (5). Our goal is to capture features with varying degrees of non-linearity.

This is important: Linear features (i.e., those given by linear combinations of Xt) contain

information about future expected returns, as is shown by (Jensen et al., Forthcoming).

Following KMZ, we control the degree of non-linearity by introducing a grid of G scale

parameters, γg, i = 1, · · · , G. In our analysis, we use the [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] grid. For

each scale parameter γg, we draw a random weight matrix

Wg ∼ N(0, γg) ∈ Rd, P
2G , (52)
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Next, we define,

Ŝt(γg) = concatenate (cos(XtWg), sin(XtWg)) ∈ RNt×P
G . (53)

We then concatenate all these feature groups to produce

Ŝt = concatenate
(
Ŝt(γ1), · · · , Ŝt(γG)

)
∈ RNt×P . (54)

We randomly permute the order of random features so that features with different activation

functions (cos or sin) and different degrees γ of non-linearity appear uniformly spread across

the feature universe. This is important for our analysis of the virtue of complexity where we

expand the set of random features from P1 = 1 to P1 = P.

We now perform the same ranking procedure as above in the random features Ŝt. Now,

there are always precisely Nt values for each random feature k, and we rank them, normalize

them by Nt, and then subtract 0.5 to obtain our final random features

St = N−1
t rank(Ŝt) − 0.5 ∈ RNt×P . (55)

Finally, we define the random factors,

Ft+1 =
1

N
1/2
t

R′
t+1St ∈ RP , (56)

where Rt+1 ∈ RN)t is a vector stock returns. The normalization by N
1/2
t ensures that

the random vector F has a well-defined, bounded covariance matrix (see the Appendix for

details).

We define a sequence of P1, gradually increasing from T to P and define q = P1/P ∈ [0, 1]

and Ft+1(q) to be the first P1 factors out of P . We pick a rolling window of T = 360

months and define our rolling estimators for the empirical mean and covariance matrix of
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the managed portfolios:

Bt(q) =
1

T

t∑
τ=t−T

Fτ (q)Fτ (q)
′ =

1

T
F[t−T :t](q)

′F[t−T :t](q) ∈ P1×P1, F (q) ∈ RT×P1 (57)

and

F̄t(q) = N
−1/2
t

t∑
τ=t−T

Fτ (q)N
1/2
τ , (58)

and then

λ̂t(z; q) = (zI +Bt(q))
−1F̄t(q) (59)

and the corresponding efficient portfolio returns,

RF
t+1(q) = λ̂t(z; q)

′Ft+1(q) . (60)

While the matrix Bt(q) is easy to define, computing (zI + Bt(q))
−1F̄t(q) is far from trivial

due to the gigantic dimension of the matrix Bt(q).We use the following lemma to circumvent

this problem.

Lemma 1 Let F ∈ RT×P1 and consider the matrix

B̃ =
1

T
FF ′ ∈ RT×T . (61)

Let B̃ = UDU ′ be the eigenvalue decomposition of B̃. Let also B = 1
T
F ′F ∈ RP×P . Define

Ũ = F ′UD−1/2 ∈ RP×T . (62)
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Then,

(zI +Bt)
−1Y = Ũ(D + zI)−1(Ũ ′Y ) + z−1(I − Ũ Ũ ′)Y (63)

for any vector Y ∈ RP . This can be computed efficiently by first computing Ŷ = Ũ ′Y ∈

RT using only P × T operations; then computing Ỹ = (diag(D + z))−1 ◦ Ŷ using only T

operations;15 and then

(zI +Bt)
−1Y = Ũ(Ỹ − z−1Ŷ )︸ ︷︷ ︸

P×T operations

+ z−1Y (64)

15A ◦B is the elementwise (Hadamard) product of two matrices A,B.
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6.1 Simulation

To provide evidence in support of our theory, we start with simulations, generating factor

returns satisfying the data-generating process assumptions. Figure 2, Panel (a), shows the

behavior of out-of-sample realized standard deviation of the efficient portfolio. Beyond the

interpolation boundary (when P > T and c > 1), we observe the key phenomenon responsible

for the virtue of complexity principle discovered in KMZ: With the growing complexity,

implicit regularization of high-dimensional models leads to a reduction in out-of-sample risk.

At the same time, as the model becomes a closer approximation to the true complex model,

Figure 2, Panel (b) shows how the out-of-sample expected return is monotonically increasing

in c. Not surprisingly, these patterns are mapped into a monotonic improvement in the Sharpe

Ratio and Pricing Errors past the interpolation boundary, as can be seen from Figure 3.

(a) Volatility (b) Expected Return

Figure 2: Simulation results: Volatility and Expected Returns with Ψ = I and λ ∼ N(0, I)
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(a) Sharpe Ratio (b) Pricing Error

Figure 3: Simulation results: SDF Performance with Ψ = I and λ ∼ N(0, I)



6.2 Full Sample

We now repeat the experiment from the previous section with real data, using signals and

factors constructed in (55)-(56) and the efficient portfolios from (60). In this experiment, we

use all stocks in our sample. For all degrees of complexity below the maximum (q < 1), we

conducted the experiment 20 times by randomly selecting P1 features out of a maximum of

1e6. The results presented below and in the rest of this section represent the average per-

formance across those 20 experiments. Figure 4 reports the realized OOS Sharpe ratios and

pricing errors. The remarkable monotonic patterns observed with real data offer compelling

empirical evidence for the complexity principle: increasing the number of factors significantly

enhances the out-of-sample performance of factor models. The extremely high Sharpe ratio

(above 4) achieved by the highest-complexity models reflects significant frictions (such as

illiquidity and short-sale constraints) associated with trading small and micro-stocks. To

understand the role of these frictions, we analyze the virtue of complexity separately for

each size group in the next section.

(a) Sharpe Ratios (b) Pricing Errors

Figure 4: Sharpe ratios (a) and pricing error (b) of (60) computed on our full sample.

One may ask whether other forms or sparse representations for the pricing kernel exist.

One natural form of sparsity could be potentially achieved by using only a few most important
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principal components of factors, as in (Kelly et al., 2020), (Kozak et al., 2018), (Kozak et

al., 2020), (Lettau and Pelger, 2020), and (Giglio and Xiu, 2021), who argue that retaining

only a few top principal components is sufficient to explain the cross-section of returns.

See also (Gagliardini et al., 2016). We investigate this approach empirically and report the

corresponding results in Figures 5 and 6. As one can see, even with the top 25 principal

components, the performance gap relative to the full high-complexity model is very large,

with the Sharpe ratio dropping from 4 to 3.

(a) K = 5 (b) K = 10 (c) K = 25

Figure 5: Shrinking with PCA: Sharpe Ratios of top-PCs-based version of (60). K indicates the
number of top PCs used. PCs are computed in the same rolling window as (60)

(a) K = 5 (b) K = 10 (c) K = 25

Figure 6: Shrinking with PCA: Pricing Error of top-PCs-based version of (60). K indicates the
number of top PCs used. PCs are computed in the same rolling window as (60)
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6.3 Empirical Analysis by Size Group

In the previous section, we performed our analysis on the full cross-section of stocks. We

now perform our experiments separately for four groups of stocks, selecting according to

their market capitalization (size): mega (largest 20% of stocks based on NYSE breakpoints

at each time period), large (between 80% and 50% percentile of NYSE breakpoints), small

(between 50% and 20% percentile of NYSE breakpoints), and micro (between 20% and 1%

percentile).

We construct our random feature and optimal portfolio for various P1 using the methods

outlined in the previous section and calculate the Sharpe Ratio per complexity level and size

group (see Figure 7), as well as the pricing error (see Figure 8). Both figures demonstrate

that the VoC holds for all subsamples in terms of both pricing error and Sharpe Ratios.

Not surprisingly, The Sharpe ratio achieves its highest values for the micro group of stocks.

The more realistic Sharpe ratio of 1.75 achieved by the highest-complexity model trading

only mega stocks (about 300-500 largest stocks in the US economy) is broadly consistent

with the net Sharpe ratio of roughly 1.4 reported in Jensen et al. (2022) after accounting for

transaction costs.
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(a) Mega (b) Large

(c) Small (d) Micro

Figure 7: Sharpe ratios of (60) for different Market Capitalization Subsamples



(a) Mega (b) Large

(c) Small (d) Micro

Figure 8: Pricing Errors of (60) for different Market Capitalization Subsamples



6.4 Complexity vs Simpler Models

So far, we have only discussed the absolute performance of the high-complexity efficient

portfolios. But how does it relate to standard benchmarks such as Fama-French factors and

simpler efficient portfolios based on “linear” characteristics from (Jensen et al., Forthcoming)

that serve as an input to our high-complexity features? To answer this question, we first

define

F linear
t = X ′

tRt+1 , (65)

where Xt ∈ RNt×110 is the matrix of rank-standardized characteristics taking values in

[−0.5, 0.5] (see Section 6 for details). Xt are built so that F linear
t is expected to have positive

mean returns. Next, we build two simple benchmarks: The 1/N portfolio (see DeMiguel et

al. (2009)), defined as the equal-weighted portfolio of F linear
t

REW
t =

1

Nt−1

110∑
k=1

F linear
t,k , (66)

and the efficient portfolio of linear factors built using the same methodology as (60):

Rlinear
t+1 (z) = λ̂lineart (z; q)′F linear

t+1 (q) (67)

where

λ̂lineart (z; q) = (zI +Blinear
t (q))−1F̄ linear

t (q) ,

is constructed using the respective moments of F linear
t . Additionally, we use six standard

Fama-French and momentum factors as benchmarks: CMAt,HMLt,MKTt,MOMt, RMWt,

and SMBt. For both the benchmarks, Rlinear
t (z) and the dependent variable RF

t (z; q), we
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select the penalty parameters that maximize the Sharpe Ratio over the entire sample. We

denote these optimal pelanty parameters by zlinear∗ and zcomplex
∗ , respectively. We then run

the multi-variate regression

RF
t (z

complex
∗ ; q) = α + βEWREW

t + βlinearRlinear
t (zlinear∗ )

+MKTt + SMBt +HMLt + CMAt +RMWt +MOMT + εt

(68)

The results of these regressions are summarized in Figure 9a and Table 1. The figure displays

the heteroskedasticity-adjusted t-statistics of the regressions for various degrees of complexity

of our complex pricing kernel for the full sample (all) and the sample defined by market

capitalization (see section 6.3). The table presents the regression’s α and β, along with

their standard deviations for the maximum complexity across all stock groups. It is evident

that high-complexity efficient portfolios significantly outperform the extremely demanding

benchmark in (68), with both economic and statistical significance. We interpret these

findings as evidence that the true pricing kernel is highly non-linear in characteristics, and

our high-complexity model can capture some of these non-linearities.
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(a) Heteroskedasticity-adjusted (with five lags) t-statistics of α from the
regression (68) for the full stock (all) universe as well as for each size subgroup.



All Mega Large Small Micro

α 0.1805*** 0.077*** 0.0649*** 0.104*** 0.1588***

(0.0218) (0.0191) (0.0204) (0.0248) (0.0316)

Rlinear
t 0.6362*** 0.7844*** 0.7184*** 0.5021*** 0.6413***

(0.046) (0.0476) (0.0411) (0.0307) (0.0626)

REW
t -0.0012 -0.0023 -0.0002 0.006 -0.0087

(0.0053) (0.0071) (0.0132) (0.0069) (0.0131)

CMAt 0.9779 -0.2212 -1.5575 0.9845 1.1355

(0.8746) (1.1865) (1.3362) (1.6593) (1.0378)

HMKt 0.0957 1.8198** 2.362** 1.1499 -0.2733

(0.7252) (0.7632) (0.9345) (1.0122) (0.6836)

MKTt 1.7219*** 0.4767 1.7409*** 1.7501*** 0.4887

(0.3484) (0.5621) (0.6091) (0.6476) (0.3876)

MOMt 1.2361*** -0.1158 0.5778 3.2479*** 0.4871

(0.425) (0.5837) (0.648) (0.9557) (0.44)

RMWt 4.0977*** 2.9615*** 5.901*** 5.2083*** 2.9756***

(0.816) (1.0195) (1.3512) (1.3278) (1.0467)

SMBt 0.4532 -0.496 -0.1987 -1.7623* -0.6249

(0.5297) (0.7108) (0.891) (0.9314) (0.5023)

Observations 322 322 322 322 322

R2 0.7924 0.644 0.7453 0.6655 0.7838

Table 1: Heteroskedasticity-adjusted (with five lags) t-statistics of α and β coefficients for
the regression (68) for the full stock (all) universe as well as for each size subgroup, with
q = 1—that is c = P

T
= 1e6

360
. Note: *, **, and *** indicate significance at the 10%, 5%, and

1% levels, respectively. Standard errors are reported in parentheses.
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A Infeasible Portfolio

Then, by a direct calculation,16

λ =
1

1 +MaxSR2
Var[F ]−1E[F ] , (69)

where we have defined

MaxSR2 = E[F ]′Var[F ]−1E[F ] (70)

to be the maximal achievable unconditional squared Sharpe ratio. Most existing papers

perform their analysis assuming that the population moments of the factors are directly

observable and, hence, so is the vector of factor risk premia, λ. The corresponding portfolio

satisfies

E[λ′Ft+1] = E[(λ′Ft+1)
2] = E[F ]′E[FF ′]−1E[F ] =

MaxSR2

1 +MaxSR2
. (71)

It will be instructive for our subsequent analysis to decompose the maximal Sharpe ratio

into the contributions coming from the factor principal components. Given the eigenvalue

decomposition Var[F ] = U diag(µ)U ′, we can define PCi to be the i-th column of U ′F . In

the sequel, we will use

θ = U ′E[F ] (72)

16See the Sherman-Morrison formula(99) in the Appendix.
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to denote the vector of mean returns of the PCs. Then, we can rewrite the maximal Sharpe

ratio (70) as

MaxSR2 =
∑
i

θ2i
µi

=
∑
i

(SR(PCi))
2 . (73)

We will now use this representation to understand the effect of ridge shrinkage on the

performance of the infeasible efficient portfolio,

Rinfeas
t+1 (z) = E[F ]′(zI +Var[F ])−1Ft+1 . (74)

We call this portfolio infeasible because, in the big data regime, when P > T, neither

E[F ] ∈ RP nor E[FF ′] ∈ RP×P can be efficiently estimated from only T observations. By

construction, Rinfeas
t+1 (0) = λ′Ft+1 achieves the MaxSR, and

Rinfeas
1 (z) = E[Rinfeas(z)] = E[F ]′(zI + E[FF ′])−1E[F ] =

A(z)

1 + A(z)
, (75)

where we have defined

A(z) = E[F ]′(zI +Var[F ])−1E[F ] =
∑
i

(SR(PCi))
2 µi

µi + z
. (76)

The function A(z) will be important in understanding ridge-regularization in the high-

complexity case. It turns out that the risk of the efficient portfolio can be expressed in

terms of the derivative of A(z) : Defining

(zA(z))′ =
∑
i

(SR(PCi))
2

(
µi

µi + z

)2

, (77)
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a somewhat tedious calculation implies that

Var[Rinfeas(z)] =
(zA(z))′

(1 + A(z))2
. (78)

and

Rinfeas
2 (z) = E[(Rinfeas(z))2] =

d

dz

(
zA(z)

1 + A(z)

)
. (79)

Since the weights µi

µi+z
are monotone increasing in µi, we see that all that the ridge shrinkage

does it re-weights principal components, giving a larger weight to higher-variance PCs. The

following is a simple but important observation, implying that ridge shrinkage is always

detrimental to performance.

Lemma 2 The Sharpe ratio SRinfeasible(z) = SR(Rinfeasible(z)) is monotone decreasing in

z.

B Data Generating Process Consistent with the Factor Structure

Definition 1 (Strongly uncorrelated variables) We say that fi, i = 1, · · · , K are strongly

uncorrelated if E[fi1fi2 ] = 0 for all i1 ̸= i2, E[fi1fi2fi3 ] = 0 for any i1, i2, i3 and E[fi1fi2fi3fi4 ] =

0 unless the set {i1, i2, i3, i4} contains exactly two different elements.

Assumption 3 There exist independent random matrices Xt ∈ RN×P with six finite first

moments, and two symmetric, nonnegative-definite matrices Σ ∈ RN×N and Ψ ∈ RP×P , such

that

St =
1

N1/2
Σ1/2XtΨ

1/2 . (80)
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Furthermore, E[Xi,k,t] = 0, and they are strongly uncorrelated. Finally, we assume that the

sixth moments are uniformly bounded: maxi,k E[X
6
i,k,t] ≤ K for some K > 0.

Assumption 3 implies that Ψ and Σ are identifiable only up to a multiplicative constant.

Indeed, multiplying Σ by a constant and dividing Ψ by the same constant does not change

St. Up to this constant, Ψ and Σ can be identified using the identities

E[S ′S] = tr(Σ/N)Ψ ∈ RP×P and E[SS ′] = tr(Ψ)Σ/N ∈ RN×N . (81)

While Ψ captures the covariance structure of characteristics across characteristics, Σ captures

the covariance structure of signals across assets. The latter defines the cross-sectional

diversification capacity of the characteristics-based portfolios. For example, suppose that

rankΣ = 1, so that Σ1/2 = ππ′ for some π ∈ RN . Then, St = N−1/2ππ′XtΨ
1/2 and therefore

all factors are given by

Ft+1 = Ψ1/2X ′
tπ(π

′Rt+1) , (82)

implying that all factor returns are proportional to returns on a single portfolio, π′Rt+1.

Thus, there are no diversification benefits from constructing a portfolio of factors. The same

happens when Σ has only a few large eigenvalues. Our next technical assumption ensures

that this pathological situation cannot occur.

Assumption 4 (Diversification) We have tr(Σ/N) → 117 and tr(Σ2/N2) → 0.

This assumption implies that the signals for asset returns Ri,t+1 are sufficiently diversified

because a few top principal components do not dominate the factor portfolio returns. As an

illustration, consider the case when rank(Σ) = 1. In this case, σ∗ = 1 means that tr(Σ) = N

and tr(Σ2) = N2. Let π be the corresponding eigenvector. Then, π′St is the only linear

17This normalization is without loss of generality.
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combination of signals with non-zero variance, and hence Ft+1 = S ′
tRt+1 = (S ′

tπ)π
′Rt+1.

That is, all factor returns are proportional to the returns on just one portfolio, π′Rt+1.

In this case of an extreme concentration of predictive power of the signals, there are no

diversification benefits from a large cross-section: In fact, there is effectively only one asset,

with return π′Rt+1, and our results do not apply. Empirically, we find strong support for this

assumption, finding that the Herfindahl index, tr(Σ2)/(tr(Σ)2) is around 1/N is all samples

we consider.

In order to proceed further, we make assumptions about the conditional covariance matrix

of returns.

Assumption 5 We assume that Et[Ri,t+1Rj,t+1] = ΣR
i,j(St) + Σε where Σ

R(St) is uniformly

bounded and tr(ΣR(St)) = o(P ).

We now define

Ft+1 = N1/2S ′
tRt+1 (83)

In this section, we investigate the feasible counter-part of the efficient factor portfolio, with

both E[F ] and E[FF ′] estimated in finite samples: Namely, we define

λ̂(z) = (zI +BT )
−1 1

NT

T∑
t=1

Ft (84)

where

BT =
1

NT

T∑
t=1

FtF
′
t . (85)

The ridge regularization zI is necessary to take care of the fact that the matrix BT is

degenerate when T < P. When z = 0, portfolio (84) is the natural finite sample counterpart

of the infeasible efficient portfolio (??). The corresponding realized (out of sample) returns
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are then given by

RF
T+1(z) = λ̂(z)′Ft+1 = (N1/2Stλ̂(z))

′Rt+1 . (86)

Our goal in this paper is to understand the performance of this portfolio in the limit as

T, P → ∞. Standard arguments based on the law of large numbers imply that

lim
T→∞, P/T→0

λ̂(z) = (zI + E[FtF
′
t ])

−1E[Ft] . (87)

In particular, when z = 0, we have λ̂(z) → πF and Proposition ?? implies that λ̂(0) achieves

the maximal possible conditional Sharpe ratio, coinciding with that of the conditionally

efficient portfolio. The condition P/T → 0 is key to this result. It corresponds to a limit of

zero complexity. By contrast, in this paper we are interested in the high complexity limit,

corresponding to P/T → c > 0.

The first step in our analysis is to understand the asymptotic behavior of the empirical

factor covariance matrix, BT , defined in (85). As we show below, a key role in our results is

played by the eigenvalue distribution of BT . We start with the following technical lemma.

Lemma 3 Suppose that E[(UXi,k)
4] = ξk is independent of i, where U is the eigenmatrix of

Σ. We have

E[BT ] =
1

N
E[FtF

′
t ] =

1

N2

(
((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ

+ tr(Σ2)Ψ1/2 diag(ξ − 2) diag(Ψ1/2N−1ΣFΨ
1/2)Ψ1/2 +Ψ

(
N tr(ΣΣε) + tr(ΨN−1ΣF ) tr(Σ

2)
))

(88)

While one might hope that the eigenvalue distribution of BT coincides with that of

1
N
E[FtF

′
t ] in the T → ∞ limit, this is only true in the zero complexity limit when P/T → 0.
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Once P/T → c > 0, the eigenvalue distribution of BT and 1
N
E[FtF

′
t ] diverge. The following

is true.

Theorem 8 The eigenvalue distribution of 1
N
E[FtF

′
t ] converges to that of Ψσ∗ where σ∗ =

limN−1 tr(ΣΣε) in the limit as N,P, T → ∞, P/T → c, so that

1

P
tr

(
(zI +

1

N
E[FtF

′
t ])

−1

)
→ σ−1

∗ mΨ(−z/σ∗) =
1

P
tr((zI + σ∗Ψ)−1) . (89)

whereas

1

P
tr((zI +BT )

−1) → m(−z; c) , (90)

where, for each z < 0, we have that m(z; c) is the unique positive solution to the non-linear

master equation

m(z; c) =
1

1 − c − c z m(z; c)
mσ∗Ψ

(
z

1 − c − c z m(z; c)

)
. (91)

Perhaps surprisingly, the ((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ term from (88) is “lost” because

it has rank one and therefore does not affect the eigenvalue distribution. See, for example,

Lemma 2.4 in (Silverstein and Bai, 1995). As we show in Lemma 9 in the Appendix, the

kurtosis term also has no impact on the asymptotic eigenvalue distribution. The proof of

this theorem is non-trivial and is based on techniques from the random matrix theory from

(Bai and Zhou, 2008). Applying standard results from random matrix theory to Ft is not

straightforward because of the complex cross-dependence in higher moments of Ft introduced

by the signals. Namely, even if Rt+1 are conditionally independent, S ′
tRt+1 have very strong

cross-dependencies.
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Proof of Theorem ??. We have

PricingError(z; cq; q) = E[F ′(1− λ(z; q)′F (q))]E[FF ′]−1E[(1− λ(z; q)′F )F ]

= (E[F ]− E[FF (q)′]λ(z; q))′E[FF ′]−1(E[F ]− E[FF (q)′]λ(z; q))

= E[F ]′E[FF ′]−1E[F ]− 2E[RF (z; q)F ′]E[FF ′]−1E[F ]︸ ︷︷ ︸
directional

+ E[RF (z; q)F ′]E[FF ′]−1E[RF (z; q)F ]︸ ︷︷ ︸
risk

= E[F ]′E[FF ′]−1E[F ]− 2E[RF (z; q)] + E[(RF (z; q))2]

(92)

We have

E

[
λ̂(z; q)′

(
1

T̂

∑
τ

(Fτ (q))F
′
τ

)
((0+)I + B̂T̂ )

−1

(
1

T̂

∑
τ

Fτ

)]
(93)

Now, all matrices here have a block structure:(
1

T̂

∑
τ

(Fτ (q))F
′
τ

)
= [B̂T̂ (q) + (0+)I , Ψ̂1,2] (94)

where Ψ̂1,2 ∈ RP1×(P−P1) and, assuming for simplicity that

(
1

T̂

∑
τ

(Fτ (q))F
′
τ

)
((0+)I + B̂T̂ )

−1 = [IP1×P1 , 0P1×(P−P1)] (95)

by the definition of the inverse matrix. Namely,

(A,B)

A B

C D

−1

= (I, 0) (96)
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Thus,

E[RF (z; q)F ′]E[FF ′]−1 = λ̂(z; q)′(I, 0) (97)

and hence

E[RF (z; q)F ′]E[FF ′]−1E[RF (z; q)F ]

= E[RF (z; q)F ′]E[FF ′]−1E[FF ′]E[FF ′]−1E[RF (z; q)F ]

= λ̂(z; q)′E[F (q)F (q)′]λ̂(z; q) .

(98)

□

where w(t, z) ∈ RP̃ are the optimal weights given a penalty term z

and Ft+1(x̃i,t) ∈ RP̃ is

the vectors containing all the Ft+1,k(x̃i,t) for k = 1 to P̃ .

C Proofs for the Infinite Sample

We will frequently be using the Sherman-Morrison formula

(A+ xx′)−1 = A−1 − A−1xx′A−1/(1 + x′Ax) (99)

for any matrix A ∈ RP×P and any vector x ∈ RP .

Lemma 4 We have

(A+B)−1 = B−1 − (A+B)−1AB−1 , (100)
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and

(A+B)−1AB−1 ≤ A (101)

in the sense of positive semi-definite order.

Proof of Lemma 4. We have

(A+B)−1AB−1 = B−1/2(Â+ I)−1ÂB−1/2 ≤ B−1/2ÂB−1/2 = B−1AB−1 (102)

□

Proof of Proposition ??. We have

((ΣF )
−1 + S ′

tSt)
−1 ≤ ((ΣF )

−1)−1

Hence, defining

Qt = (StΣ
∗
FS

′
t + Σε)

−1 = Σ−1
ε − (StΣ

∗
FS

′
t + Σε)

−1StΣ
∗
FS

′
tΣ

−1
ε , (103)
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we get

E[R′
t+1π

MV
t ]

= E[(StF̃t+1 + εt+1)
′(St(ΣF )S

′
t + Σε)

−1Stλ]

= E[λ′S ′
t(St(ΣF )S

′
t + Σε)

−1Stλ]

= E[λ′S ′
t(St(λλ

′ + Σ∗
F )S

′
t + Σε)

−1Stλ]

= E[λ′S ′
t((Stλ)(Stλ)

′ + (StΣ
∗
FS

′
t + Σε))

−1Stλ]

=︸︷︷︸
(99)

E[λ′S ′
t(Qt −QtStλλ

′S ′
tQt(1 + λ′S ′

tQtStλ)
−1)Stλ]

= E[Zt − Z2
t (1 + Zt)

−1] = E[Zt/(1 + Zt)] ,

(104)

where

Zt = λ′S ′
tQtStλ = λ′S ′

tΣ
−1
ε Stλ− q , (105)

where, by Lemma 4,

(StΣ
∗
FS

′
t + Σε)

−1StΣ
∗
FS

′
tΣ

−1
ε ≤ Σ−1

ε StΣ
∗
FS

′
tΣ

−1
ε (106)

and hence

q = λ′St(StΣ
∗
FS

′
t + Σε)

−1StΣ
∗
FS

′
tΣ

−1
ε Stλ ≤ λ′StΣ

−1
ε StΣ

∗
FS

′
tΣ

−1
ε Stλ . (107)
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We have that, by Corollary 9,

E[λ′S ′
tΣ

−1
ε StAS

′
tΣ

−1
ε Stλ] =

1

N2
λ′

(
((tr Σ̂)2 + tr(Σ̂2))ΨAΨ+ tr(Σ̂2) tr(ΨA)Ψ

+ tr(Σ̂2) (κ− 2)Ψ1/2 diag(Ψ1/2AΨ1/2)Ψ1/2

)
λ

≈ λ′ΨAΨλ

= λ′UDU ′AUDU ′λ

= tr(AD2|U ′λ|2) ≤ tr(A)max
k

(µ2
k|U ′

kλ|2)

(108)

with

A = Σ∗
F (109)

and

Σ̂ = Σ1/2Σ−1
ε Σ1/2 (110)

Thus, by assumption, E[qt] → 0 and hence qt → 0 is probability. As a result, Zt−λ′S ′
tStλ→ 0

is probability, while λ′StS
′
tλ→ P−1 tr(ΨΣλ) is probability, and hence

Zt

1 + Zt

→ P−1 tr(ΨΣλ)

1 + P−1 tr(ΨΣλ)
(111)

in probability, and the dominated convergence theorem implies that the same holds in

expectation. Similarly,

E[(πMV
t )′Rt+1R

′
t+1π

MV
t ]

= E[λ′S ′
t(St(ΣF )S

′
t + I)−1(St(ΣF )S

′
t + I)(St(ΣF )S

′
t + I)−1Stλ]

= E[R′
t+1π

MV
t ]

(112)
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Now, for the factor portfolios, we have

E[Ft] = N1/2E[S ′
tRt+1] = N1/2E[S ′

t(StF̃t+1 + εt+1)] =
1

N1/2
E[Ψ1/2X ′

tΣXtΨ
1/2λ] = N1/2Ψλ

(113)

and, again by Corollary 9, we have

1

N
E[FtF

′
t |λ] = E[S ′

t(StF̃t+1 + εt+1)(StF̃t+1 + εt+1)
′St|λ] = E[S ′

t(St(ΣF )S
′
t + I)St]

≈ Ψ +Ψ(ΣF )Ψ .

(114)

Thus, defining

Q = (Ψ + ΨΣ∗
FΨ)−1 , (115)

we get that the efficient portfolio of factors is given by

πF = (Ψ + Ψ(ΣF )Ψ)−1Ψλ

{(99)} = (Q−QΨλλ′ΨQ(1 + λ′ΨQΨλ)−1)Ψλ

=
1

1 + Z
QΨλ ,

(116)

where

Z = λ′ΨQΨλ . (117)

and we get, by the same argument as above, that Z → P−1 tr(ΨΣλ) because Σ
F
∗ has a small
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trace. We then have E[Ft+1] = N1/2Ψλ and, hence,

N−1/2E[π′
FFt+1] = E[λ′

1

1 + Z
ΨQΨλ] ≈ Z

1 + Z
, (118)

while

N−1E[π′
FFt+1F

′
t+1πF ] = E[π′

F (Ψ + Ψ(ΣF )Ψ)πF ] = N−1/2E[π′
FFt+1] , (119)

and the proof is complete. □

Everywhere in the sequel, we abuse the notation and use the equivalent

formulation where St = Σ1/2XtΨ
1/2, while F̃ is rescaled by N−1/2, so that Σλ and

Σ∗
F are both multiplied by 1/N. Defining βt+1 = N−1/2F̃t+1, we can reformulate our

key assumptions as

Assumption 6 We have

Rt+1 = Stβt+1 + εt+1 (120)

where St = Σ1/2XtΨ
1/2, and E[βt+1] = N−1/2λ where E[λλ′] = P−1Σλ; and E[(βt+1 −

λ)(βt+1 − λ)′] = N−1Σ∗
F . We will also use the notation b∗,1 = tr(Σ∗

F ) + P−1 tr(Σλ), and

b∗ = b∗,1/N .

Lemma 5 We have

N(β′
t+1APβt+1 − tr((Σ∗

FAP ) + P−1 tr(APΣλ))) → 0 (121)

is L2 and hence in probability, for any sequence of bounded matrices AP .

Proof. [add...] □
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We will need the following lemma, whose proof follows by direct calculation.

Lemma 6 Suppose that Xt ∈ RN×M is a matrix with i.i.d. elements satisfying E[Xi,kXj,l] =

δ(i,k),(j,l). Then,

E[X ′
tΣXt] = tr(Σ) IM×M .

We can now prove

Lemma 7 (Expected Factor Moments) We have

E[S ′
tΣεSt] = tr(ΣΣε)Ψ

and

E[Ft+1F
′
t+1] = ((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ

+ tr(Σ2)Ψ1/2 diag(κ− 2) diag(Ψ1/2N−1ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(ΣΣε) + tr(ΨN−1ΣF ) tr(Σ

2)
)

(122)

Proof of Lemma 7. We have

E[Ft+1F
′
t+1] = E[S ′

t(StF̃ + ε)(StF̃ + ε)′St] = E[S ′
tStΣFS

′
tSt] + E[S ′

tΣεSt] ,

and

E[S ′
tΣεSt] = E[Ψ1/2X ′

tΣ
1/2ΣεΣ

1/2XtΨ
1/2] = Ψ1/2E[X ′

tΣ
1/2ΣεΣ

1/2Xt]Ψ
1/2 = Ψtr(ΣΣε) ,
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Defining β̃ = Ψ1/2βt+1, we get

E[S ′
tStβ̃β̃

′S ′
tSt] = E[Ψ1/2X ′

tΣXtΨ
1/2β̃β̃′Ψ1/2X ′

tΣXtΨ
1/2] = E[Ψ1/2X ′

tΣXtβ̃β̃
′X ′

tΣXtΨ
1/2]

= Ψ1/2E[X̃ ′
tDX̃tβ̃β̃

′X̃ ′
tDX̃t]Ψ

1/2 ,

(123)

where we have defined Σ = U ′DU and D is diagonal and U is orthogonal and X̃ = UX are

still have the same moments as X by the assumptions made.

Now,

E[X̃ ′
tDX̃tβ̃β̃

′X̃ ′
tDX̃t]k1,k2 = E[

∑
i1,i2,l1,l2

Di1Di2 X̃i1,k1X̃i1,l1 β̃l1 β̃l2X̃i2,l2X̃i2,k2 ] .

First we study the terms with i1 ̸= i2 :

∑
i1 ̸=i2

Di1Di2 E[
∑
l1,l2

X̃i1,k1X̃i1,l1 β̃l1 β̃l2X̃i2,l2X̃i2,k2 ] =
∑
i1 ̸=i2

Di1Di2 β̃k1 β̃k2 = ((trΣ)2−tr(Σ2))β̃k1 β̃k2

At the same time,

∑
i1=i2

D2
i1
E[
∑
l1,l2

X̃i1,k1X̃i1,l1 β̃l1 β̃l2X̃i2,l2X̃i2,k2 ]

depends on whether k1 = k2. If k1 = k2, then we have

∑
i1=i2

D2
i1
E[
∑
l1,l2

X̃2
i1,k1

X̃i1,l1 β̃l1 β̃l2X̃i1,l2 ] = tr(Σ2)(κβ̃2
k1
+ ∥β̃∥2)

and if k1 ̸= k2 then we need that ℓ1, ℓ2 coincide with k1, k2, so that

∑
i1=i2

Di1Di2E[
∑
l1,l2

X̃i1,k1X̃i1,l1 β̃l1 β̃l2X̃i2,l2X̃i2,k2 ] = 2
∑
i1=i2

D2
i1
E[X̃2

i1,k1
X̃2

i1,k2
]β̃k1 β̃k2 = 2 tr(Σ2)β̃k1 β̃k2
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Thus,

E[X̃ ′
tDX̃tβ̃β̃

′X̃ ′
tDX̃t]k1,k2

= ((tr Σ)2 − tr(Σ2))β̃k1 β̃k2 + 2 tr(Σ2)β̃k1 β̃k2(1− δk1,k2) + tr(Σ2)(κβ̃2
k1
+ ∥β̃∥2)δk1,k2

= ((tr Σ)2 + tr(Σ2))β̃k1 β̃k2 + tr(Σ2)((κ− 2)β̃2
k1
+ ∥β̃∥2)δk1,k2

(124)

Thus, by formula (123), we get

E[S ′
tStλλ

′S ′
tSt] = ((tr Σ)2+tr(Σ2))ΨN−1ΣFΨ+tr(Σ2)((κ−2)Ψ1/2 diag(β̃2

k1
)Ψ1/2+∥β̃∥2Ψ)

(125)

and the claim follows because ∥β̃∥2 = λ′Ψλ.

Corollary 9 We have

E[S ′
tStAS

′
tSt] = ((tr Σ)2 + tr(Σ2))ΨAΨ+ tr(Σ2) tr(ΨA)Ψ

+ tr(Σ2)Ψ1/2 diag(κ− 2) diag(Ψ1/2AΨ1/2)Ψ1/2
(126)

where diag(Ψ1/2AΨ1/2) is the diagonal matrix with diagonal coinciding with that of diag(Ψ1/2AΨ1/2).

Proof. Writing

A =
∑
i

λiβiβ
′
i

we can apply the calculations for rank-one A. □

The proof of Lemma 7 is complete.

□
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Lemma 8 Define ξ(z; c) through

c−1ξ(z; c)

1 + ξ(z; c)
= 1 − m(−z; c)z . (127)

Then,

1

T
tr((zI +BT )

−1Ψ) → ξ(z; c) (128)

almost surely and

1

T
F ′
T+1(zI +BT )

−1FT+1 → ξ(z; c) (129)

in probability. Furthermore, ξ(z; c) < c/z.

Define the effective shrinkage

Z∗(z; c) = z (1 + ξ(z; c)) ∈ (z, z + c) (130)

Then, Z∗(z; c) is monotone increasing in z and c. In the ridgeless limit as z → 0, we have

Z∗(z; c) →


0, c < 1

1/m̃(c), c > 1

(131)

where m̃(c) > 0 is the unique positive solution to

c− 1 =

∫ dH(x)
m̃(1+m̃ x)∫ xdH(x)
1+m̃ x

(132)
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D Technical Lemmas

Lemma 9 Let XP be a sequence of positive semi-definite matrices with tr(XP ) ≤ K. Then,

lim
M→∞

(
1

P
tr(zI + AP +XP )

−1 − 1

P
tr(zI + AP )

−1) = 0

for any positive semi-definite matrices AP .

Proof. We have

1

P
tr(zI +AP +XP )

−1 − 1

P
tr(zI +AP )

−1 =
1

P
tr((zI +AP +XP )

−1 − (zI +AP )
−1)

and the claim follows because

1

P
tr((zI +AP +XP )

−1 − (zI +AP )
−1) = − 1

P
tr((zI +AP +XP )

−1XP (zI +AP )
−1)

and

tr((zI + AP +XP )
−1XP (zI + AP )

−1) = tr(XP (zI + AP )
−1(zI + AP +XP )

−1)

≤ tr(XP )∥(zI + AP )
−1(zI + AP +XP )

−1∥ ≤ Kz−2
(133)

Thus, the difference is bounded in absolute value by Kz−2/M. □

We will need the following auxiliary lemma.

Lemma 10 Let ε be a random vector with independent N(0, 1) coordinates. We have

E[εZ ′ε] = Z
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and

E[ε′Zε′] = Z ′

for any vector Z. Furthermore,

E[ε′Aε] = tr(A)

for any matrix A. Furthermore,

E[ε′tBεtε
′
tBεt] = (κε − 1) 0.5(tr(BB) + tr(B′B)) + tr(B)2 (134)

and

E[εtε
′
tBεtε

′
t] = (κε − 1)0.5(B +B′) + tr(B)

where κε = E[ε̃4].

Proof. We have

E[εZ ′ε]i,j = E[εi
∑
j

Zjεj] =
∑
j

Σε,i,jZj

and the first claim follows. The second claim follows because

E[ε′Zε′] = EεZ ′ε]′ .

For the third claim, we have

E[ε′Aε] = trE[ε′Aε] = trE[Aεε′] = tr(A) (135)
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For the last claim: first, we do a transformation εt = ε̃t and then we make the observation

that, for any matrix B,

ε′Bε = 0.5ε′(B +B′)ε.

Since 0.5(B +B′) is symmetric, we can diagonalize it: B̃ = (0.5(B +B′)). Then,

E[ε′tBεtε
′
tBεt] = E[(

∑
i

ε2i,tλi(0.5(B +B′)))2] = (κε − 1) tr(B̃2) + tr(B̃)2 , (136)

and we have

tr(B̃2) = tr((0.5(B +B′))(0.5(B +B′))) = 0.25(tr(BB) + 2(trB′B) + tr(B′B′))

and

tr(B′B′) = tr(B′B′) = tr(BB) .

Let ε = ε̃ and B̃ = UΛU ′ and ε̂ = U ′ε̃

E[εtε
′
tBεtε

′
t]

= E[ε̃ε̃′B̃ε̃ε̃′]

= UE[ε̂ε̂′Λε̂ε̂′]U ′

= UE[ε̂
∑
i

ε̂2i1λi1(B̃)ε̂′]U ′

= (κε − 1)B̃ + tr(B̃)

= (κε − 1)0.5(B +B′) + tr(B)

(137)

□

Lemma 11 Let AP be a sequence of symmetric P × P matrices such that ∥AP∥ ≤ K and
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AP are independent of Ft. Then,
1
N
E[FtF

′
t ] is uniformly bounded and

Var[
1

TN
F ′
tAPFt] → 0 , (138)

so that

1

TN
(F ′

tAPFt − tr (AP σ∗Ψ)) → 0

in probability. That is, averaging across P factors leads to constant risk, no matter which

matrix A we use to measure it.

Lemma 12 Let AP , BP be sequences of symmetric P ×P matrices such that ∥AP∥, ∥BP∥ ≤

K, and AP , BP are independent of Ft. Then,

1

N
(λ′E[APFtF

′
tBP ]λ − λ′AP (Ψλλ

′Ψ+ σ∗Ψ)BPλ) → 0

in probability.

Note that tr (AP FtF
′
t) = F ′

tAPFt.

Proof of Lemma 11. For simplicity, we will assume that AP is deterministic.18 We can

also assume that AP is symmetric because F ′
tAPFt = Ft0.5(AP + A′

P )Ft. We need to prove

that

1

(TN)2
E[F ′

tAPFtF
′
tAPFt] −

(
1

NT
E[F ′

tAPFt]

)2

→ 0

18Otherwise, we replace all expectations below by expectations conditional on AP .
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For simplicity, we will assume that Σε = I. We have by Lemma 7 that

E[FtF
′
t ] = ((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ

+ tr(Σ2)Ψ1/2 diag(κ− 2) diag(Ψ1/2N−1ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(Σ) + tr(ΨN−1ΣF ) tr(Σ

2)
)

(139)

and, with ΣF having uniformly bounded traces and Assumption 4, we get

1

NT
E[F ′

tAPFt] =
1

NT
trE[APFtF

′
t ]

≈ 1

N2T
tr

(
AP

(
(tr Σ)2ΨΣFΨ+ tr(Σ2)Ψ1/2 diag(κ− 2) diag(Ψ1/2ΣFΨ

1/2)Ψ1/2

+Ψ
(
N tr(Σ) + tr(ΨΣF ) tr(Σ

2)
)))

≈ T−1 tr(APΨ)

(140)

since

1

TP
tr(ΨAPΨΣF ) = O(1/T ),

and, similarly, the kurtosis term does not matter because it has a uniformly bounded trace.

Now, we have

FtF
′
t = S ′

t−1(St−1ββ
′S ′

t−1 + εtβ
′S ′

t−1 + St−1βε
′
t + εtε

′
t)St−1

= Ztββ
′Zt + S ′

t−1εtβ
′Zt + Ztβε

′
tSt−1 + S ′

t−1εtε
′
tSt−1 .

(141)

with Zt = S ′
t−1St−1. Then, using the fact that ε and all third moments of ε have zero
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expectations as well as Lemma 10, we have

1

N2T 2
E[F ′

tAFtF
′
tAFt] =

1

N2T 2
trE[FtF

′
tAFtF

′
tA]

=
1

N2T 2
trE[(Ztββ

′Zt + S ′
t−1εtβ

′Zt + Ztβε
′
tSt−1 + S ′

t−1εtε
′
tSt−1)A

(Ztββ
′Zt + S ′

t−1εtβ
′Zt + Ztβε

′
tSt−1 + S ′

t−1εtε
′
tSt−1)A]

=
1

N2T 2
trE[Ztββ

′ZtAZtββ
′ZtA]

+
1

N2T 2
2 trE[Ztββ

′ZtAS
′
t−1εtε

′
tSt−1A]

+
1

N2T 2
2 trE[S ′

t−1εtβ
′ZtAS

′
t−1εtβ

′ZtA]

+
1

N2T 2
2 trE[S ′

t−1εtβ
′ZtAZtβε

′
tSt−1A]

+
1

N2T 2
trE[S ′

t−1εtε
′
tSt−1AS

′
t−1εtε

′
tSt−1A]

=
1

N2T 2
trE[Ztββ

′ZtAZtββ
′ZtA]

+
1

N2T 2
2 trE[Ztββ

′ZtAZtA]

+
1

N2T 2
2 trE[ZtAZtββ

′ZtA]

+
1

N2T 2
2 trE[(β′ZtAZtβ)ZtA]

+
1

N2T 2
((κε − 1) trE[ZtAZtA] + trE[tr(ZtA)ZtA])

=
1

N2T 2
trE[Ztββ

′ZtAZtββ
′ZtA]

+
1

N2T 2
4 trE[Ztββ

′ZtAZtA]

+
1

N2T 2
2 trE[(β′ZtAZtβ)ZtA]

+
1

N2T 2
((κε − 1) trE[ZtAZtA] + trE[tr(ZtA)ZtA])

= Term1 + Term2 + Term3 + Term4 + Term5 ,

(142)
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where in the last term we have used Lemma 10 to show that

trE[S ′
t−1εtε

′
tSt−1AS

′
t−1εtε

′
tSt−1A]

= trE[S ′
t−1

(
(κε − 1)(St−1AS

′
t−1) + tr((St−1AS

′
t−1))

)
St−1A]

= (κε − 1) trE[ZtAZtA] + trE[tr(ZtA)ZtA] .

(143)

In our proofs, we will be using Newton’s identities.

Lemma 13 (Newton’s identities) Let A be a matrix with eigenvalues λi. Then,

∑
i1,i2,i1 ̸=i2

λi1λi2 = (trA)2 − tr(A2)

∑
i1,i2,i3 all different

λi1λi2λi3 = (trA)3 − 3 tr(A) tr(A2) + 2 tr(A3)

∑
i1,i2,i3,i4 all different

λi1λi2λi3λi4

= (trA)4 − 6(tr(A))2 tr(A2) + 3(tr(A2))2 + 8(trA)(tr(A3))− 6 tr(A4) .

(144)

We also note that Assumption 4 implies

tr(Σ3) ≤ tr(Σ2) tr(Σ) = o(N3), tr(Σ4) ≤ (tr(Σ2))2 = o(N4) (145)

D.1 Term1 in (142)

We start with the first term. We have

1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA] =

1

T 2
E[(β′ZtAZtβ)

2] . (146)

Writing

Zt = S ′
t−1St−1 = Ψ1/2X ′

t−1ΣXt−1Ψ
1/2
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and defining

β̃ = Ψ1/2β ,

and

Ã = Ψ1/2AΨ1/2 ,

and then using rotational invariance of all moments up to eight, we may assume that Ã is

diagonal and Σ is diagonal and β̃ = e1∥β̃∥ = (1, 0, · · · , 0)∥β̃∥. Note that

∥β̃∥2 = β′Ψβ ∼ b∗
1

P
tr(Ψ) .

Then, setting λk = λk(Ã) we get

1

N2T 2
trE[Ztββ

′ZtAZtββ
′ZtA] =

1

T 2
E[(β′ZtAZtβ)

2]

=
1

N2T 2
∥β̃∥4E[

( ∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1

)2

]

=
1

N2T 2
∥β̃∥4E[

( ∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1

)2

]

=
1

N2T 2
∥β̃∥4E[

∑
i2,j2,k2

∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1Xi2,1λi2(Σ)Xi2,k2λk2Xj2,k2λj2(Σ)Xj2,1]

(147)

• First, consider the terms with k1 = k2 in (147):

1

N2T 2
∥β̃∥4E[

∑
i2,j2

∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1Xi2,1λi2(Σ)Xi2,k1λk1Xj2,k1λj2(Σ)Xj2,1]

(148)
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Using Newton’s identities, we get that the contribution of terms with k1 = 1 is given

by

∥β̃∥4 1

N2T 2
E[
∑
i2,j2

∑
i1,j1

X2
i1,1
λi1(Σ)λ

2
1X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

= ∥β̃∥4 1

N2T 2
λ21

(
E[

∑
i2,j2,i1,j1 all different

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

+ E[
∑

i2,j2,i1,j1 only two are equal

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

+ E[
∑

i2,j2,i1,j1 only three are equal

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

+ E[
∑

i2,j2,i1,j1 all four are equal

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

)

= ∥β̃∥4λ21
1

N2T 2

(
(tr Σ)4 − 6(tr Σ)2(tr(Σ2)) + 8(tr Σ)(tr(Σ3)) + 3(tr(Σ2))2 − 6 tr(Σ4)

+

(
4

2

)
E[X4]

∑
j

λj(Σ)
2

∑
i1,j1 ̸=j,i1 ̸=j1

λi1(Σ)λj1(Σ)

+ 4E[X6]
∑
j

λj(Σ)
3
∑
i1 ̸=j

λi1(Σ)

+ E[X8] tr(Σ4)

)

= ∥β̃∥4λ21
1

N2T 2

(
(tr Σ)4 − 6(tr Σ)2(tr(Σ2)) + 8(tr Σ)(tr(Σ3)) + 3(tr(Σ2))2 − 6 tr(Σ4)

+

(
4

2

)
E[X4]

∑
j

λj(Σ)
2((tr(Σ)− λj)

2 − (tr(Σ2)− λ2j)

+ 4E[X6](tr(Σ) tr(Σ3)− tr(Σ4)) + E[X8] tr(Σ4)

)

= O

(
(tr Σ)4(β̃′Ãβ̃)2/(N2T 2)

)
= O(1/T 2)

(149)
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Here, we have used the fact that

(tr Σ)4(β̃′Ãβ̃)2 = O(N2)

because (tr Σ)2b∗/N converges to a finite limit. The rest terms with k1 = k2 ̸= 1 must

have i1, i2, j1, j2 have at least two identical pairs. The first contribution would be

∥β̃∥4E[
∑

i1=i2 ̸=j1=j2;k1

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λ2k1X
2
j1,k1

λ2j1(Σ)X
2
j1,1

]

∼ ∥β̃∥4 tr(Ã2)
(
(tr(Σ2))2 − tr(Σ4)

)
∼ ∥β̃∥4 tr(Ã2) (tr(Σ2))2 ,

(150)

there will be three contributions like this, corresponding to the three cases: i1 = i2, i1 =

j1, and i1 = j2.

In the case when more than two out of i1, i2, j1, j2 are identical, they would all have to

be identical. This contribution would be negligible because it would give

∥β̃∥4E[X4] tr(Ã2) (tr(Σ4)) = O(PN2)

which is negligible.

• We can now focus on the case k1 ̸= k2 in (147). First, consider the terms with k1 = 1.

By symmetry, terms with k2 = 1 give the same contribution. Since k2 ̸= 1 and
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∥β̃∥2λ1 = β̃′Ãβ̃, Newton’s identities imply that

λ1
1

N2T 2
∥β̃∥4E[

∑
i2,j2,k2 ̸=1

∑
i1,j1

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)Xi2,1λi2(Σ)Xi2,k2λk2Xj2,k2λj2(Σ)Xj2,1]

∼ λ1
1

N2T 2
∥β̃∥4E[

∑
i2,k2

∑
i1,j1

X2
i1,1
X2

j1,1
λi1(Σ)λj1(Σ)X

2
i2,1
λi2(Σ)

2X2
i2,k2

λk2 ]

∼ (β̃′Ãβ̃) ∥β̃∥2 1

N2T 2
tr(Ã)

(
E[
∑
i2

∑
i1,j1

X2
i1,1
X2

j1,1
λi1(Σ)λj1(Σ)X

2
i2,1
λi2(Σ)

2]

)

= (β̃′Ãβ̃) ∥β̃∥2 1

N2T 2
tr(Ã)

( ∑
i2,i1,j1 all different

λi1(Σ)λj1(Σ)λi2(Σ)
2

+
∑

i1=j1 ̸=i2

E[X4]λi1(Σ)
2λi2(Σ)

2

+ 2
∑

i1 ̸=j1=i2

E[X4]λi1(Σ)λi2(Σ)
3

+ E[X6] tr(Σ4)

)

= (β̃′Ãβ̃) ∥β̃∥2 1

N2T 2
tr(Ã)

(∑
i2

λi2(Σ)
2((tr(Σ)− λi2)

2 − (tr(Σ2)− λ2i2))

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]
∑
i2

λi2(Σ)
3(tr(Σ)− λi2)

+ E[X6] tr(Σ4)

)

= (β̃′Ãβ̃) ∥β̃∥2 1

N2T 2
tr(Ã)

(
(tr(Σ)2) tr(Σ2)− 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
(151)

because the rest terms are zero. And this term gets multiplied by 2 when we add the
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contribution of the k2 = 1 case. As above, all these terms are

O(∥λ∥4(tr(Σ))4 tr(Ã)/(N2T 2)) = O(P/T 2)

and hence are negligible.

• Now, in the case when k1 ̸= k2 and both are different from 1 in (147), we immediately

get that (i1, i2, j1, j2) must either be all identical, or come in two identical pairs. The

first case gives a contribution of

∥β̃∥4E[
∑

i,k1 ̸∈{k2,1}

X4
i,1X

2
i,k1
X2

i,k2
λi(Σ)

4λk1λk2 ] ∼ ∥β̃∥4E[X4] (tr(Ã)2−tr(Ã2)) tr(Σ4) = o(P 2N2) .

The second one ought to have i1 = j1, i2 = j2 because k1 ̸= k2 and both are not equal

to 1, giving

∥β̃∥4E[
∑
i2,k2

∑
i1,k1

X2
i1,1
X2

i1,k1
λk1λ

2
i1
(Σ)λ2i2(Σ)X

2
i2,1
X2

i2,k2
λk2 ]

∼ ∥β̃∥4((tr Ã)2 − tr(Ã2))

(
E[
∑
i2

∑
i1

X2
i1,1
λ2i1(Σ)λ

2
i2
(Σ)X2

i2,1
]

)

= ∥β̃∥4((tr Ã)2 − tr(Ã2))((tr(Σ2))2 − tr(Σ4))

∼ ∥β̃∥4((tr Ã)2 − tr(Ã2))(tr(Σ2))2

(152)
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Summarizing, the dominant terms are (150) (multiplied by 3) and (152), so that

Term1

∼ 3∥β̃∥4 tr(Ã2) (tr(Σ2))2
1

N2T 2
+ ∥β̃∥4E[X4] tr(Ã2) (tr(Σ4))

1

N2T 2

+ 2(β̃′Ãβ̃) ∥β̃∥2 1

N2T 2
tr(Ã)

(
tr(Σ2)(tr(Σ))2 − 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
1

N2T 2

+ ∥β̃∥4E[X4] (tr(Ã)2 − tr(Ã2)) tr(Σ4)
1

N2T 2

+ ∥β̃∥4((tr Ã)2 − tr(Ã2))(tr(Σ2))2
1

N2T 2

∼ ∥β̃∥4((tr Ã)2 + 2 tr(Ã2))(tr(Σ2))2/(N2T 2) ∼ ∥β̃∥4(tr Ã)2(tr(Σ2))2/(N2T 2)

(153)

because tr(Ã2) = O(P ).

D.2 Term2 in (142)

We now proceed with the second term (note that it comes with a factor of four). We have

E[λ′ZtAZtAZtλ] = ∥β̃∥2E[
∑

Xi1,1λi1(Σ)Xi1,k1λk1Xi2,k1λi2(Σ)Xi2,k2λk2Xi3,k2λi3(Σ)Xi3,1] .

(154)

• Suppose first that k1 = k2 ̸= 1 in (154). The respective contribution is

∥β̃∥2E[
∑

Xi1,1λi1(Σ)Xi1,k1λk1X
2
i2,k1

λi2(Σ)λk1Xi3,k1λi3(Σ)Xi3,1] , (155)
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and hence i1 = i3 for non-zero terms, so that this contribution becomes

∥β̃∥2E[
∑

X2
i1,1
λi1(Σ)

2X2
i1,k1

λ2k1X
2
i2,k1

λi2(Σ)]

= ∥β̃∥2
( ∑

i1 ̸=i2,k1 ̸=1

λi1(Σ)
2λ2k1λi2(Σ) + E[X4]

∑
i1,k1 ̸=1

λi1(Σ)
3λ2k1

)

∼ ∥β̃∥2 tr(Ã2)((E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2)) = O(P (b∗(tr Σ)
2) tr Σ) = O(PN2)

(156)

• The terms with k1 = k2 = 1 in (154) give

λ21∥β̃∥2E[
∑

X2
i1,1
λi1(Σ)X

2
i2,1
λi2(Σ)X

2
i3,1
λi3(Σ)]

∼ λ21∥β̃∥2
( ∑

i1,i2,i3 pairwise different

λi1(Σ)λi2(Σ)λi3(Σ)

+ 3
∑

i1,i2 different

E[X4]λ2i1(Σ)λi2(Σ) + E[X6] tr(Σ3)

)

= (β̃′Ãβ̃)2∥β̃∥2
(
(tr Σ)3 − 3(tr Σ) tr(Σ2) + 2 tr(Σ3)

+ 3E[X4]((tr Σ) tr(Σ2)− tr(Σ3)) + E[X6] tr(Σ3)

)
= O(b∗(tr Σ)

2 tr Σ) = O(N2)

(157)

by Newton’s identities, where 3
∑

i1,i2 different appears because there are three pos-

sibilities for a coincidence of of pair among i1, i2, i3, and where we have used that

∥β̃∥2λ1 = β̃′Ãβ̃.

• For the terms with k1 ̸= k2 and none of them equal to 1 in in (154), we must have
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i1 = i2 = i3 for them to be non-zero, giving

∥β̃∥2E[
∑

X2
i1,1
λi1(Σ)

3X2
i1,k1

λk1X
2
i1,k2

λk2 ] ∼ ∥β̃∥2((tr(Ã))2 − tr(Ã2)) tr(Σ3)

= o(P 2N2)
(158)

since ((tr(Ã))2 − tr(Ã2)) = O(P 2).

• If k1 ̸= k2 = 1 in (154), then we get the contribution

∥β̃∥2E[
∑

Xi1,1λi1(Σ)Xi1,k1λk1Xi2,k1λi2(Σ)Xi2,1λ1λi3(Σ)X
2
i3,1

]

= β̃′Ãβ̃E[
∑

Xi1,1λi1(Σ)Xi1,k1λk1Xi2,k1λi2(Σ)Xi2,1λi3(Σ)X
2
i3,1

]

= {only terms with i1 = i2 survive}

= β̃′Ãβ̃E[
∑

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λk1λi3(Σ)X
2
i3,1

]

∼ β̃′Ãβ̃ (tr Ã)

(
tr(Σ)(tr(Σ2)) + (E[X4]− 1) tr(Σ3)

)
= O(Pb∗(tr(Σ))

3) = O(PN2)

(159)

and there is an identical contribution with k1 = 1 ̸= k2.

Thus,

1

4
Term2 ∼ ∥β̃∥2 tr(Ã2)((E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2))

+ ∥β̃∥2((tr(Ã))2 − tr(Ã2)) tr(Σ3)

+ 2β̃′Ãβ̃ (tr Ã)

(
tr(Σ)(tr(Σ2)) + (E[X4]− 1) tr(Σ3)

)
∼ o(T 2N2) .

(160)
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D.3 Term3 in (142)

We now proceed with the third term. We have

2
1

N2T 2
E[tr(AZt)λ

′ZtAZtλ]

= 2∥β̃∥2 1

N2T 2
E[
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1,i2

Xi1,1λi1(Σ)Xi1,k1λk1(Ã)Xi2,k1λi2(Σ)Xi2,1]

(161)

• First consider the terms with k1 = 1 in (161). This gives

2∥β̃∥2 1

N2T 2
E[
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,i2

X2
i1,1
λi1(Σ)λ1(Ã)λi2(Σ)X

2
i2,1

]

∼ 2
1

N2T 2
(β̃′Ãβ̃) (tr Ã) (tr Σ)E[

∑
i1,i2

X2
i1,1
λi1(Σ)λi2(Σ)X

2
i2,1

]

= 2
1

N2T 2
(β̃′Ãβ̃) (tr Ã) (tr Σ)((tr(Σ))2 + (E[X4]− 1) tr(Σ2))

= O(Pb∗(tr Σ)
3) = O(PN2)

(162)

where in the transition from the first to the second line we have used that λ1 is a

negligible fraction of tr Ã.
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• If k1 ̸= 1 in in (161), the only non-zero terms are with i1 = i2 and they give

2∥β̃∥2 1

N2T 2
E[
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1 ̸=1

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λk1(Ã)]

∼ 2∥β̃∥2 1

N2T 2
E[
∑
k ̸=1

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1 ̸=1

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λk1(Ã)]

= 2∥β̃∥2 1

N2T 2
E[
∑
k ̸=1

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1 ̸=1

λ2i1(Σ)X
2
i1,k1

λk1(Ã)]

= 2∥β̃∥2 1

N2T 2

(
E[
∑
k ̸=1

λ2k(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1

λ2i1(Σ)X
2
i1,k

]

+ E[
∑
k ̸=1

λk(Ã)
∑

i,k1 ̸=1,k

λi(Σ)X
2
i,k

∑
i1

λ2i1(Σ)X
2
i1,k1

λk1(Ã)]

)

= 2∥β̃∥2 1

N2T 2

(
E[X4] tr(Ã2) tr(Σ3) +

∑
k ̸=1

λ2k(Ã)
∑
i

λi(Σ)
∑
i1 ̸=i

λ2i1(Σ)

+
∑
k ̸=1

λk(Ã)
∑

i,k1 ̸=1,k

λi(Σ)
∑
i1

λ2i1(Σ)λk1(Ã)

)

∼ 2∥β̃∥2 1

N2T 2

(
tr(Ã2)

(
(E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2)

)
+ ((tr Ã)2 − tr(Ã2)) tr(Σ) tr(Σ2)

)
∼ 2∥β̃∥2 1

N2T 2
(tr Ã)2 tr(Σ) tr(Σ2) .

(163)

Thus,

Term3 ∼ 2
1

N2T 2
(β̃′Ãβ̃) (tr Ã) (tr Σ)((tr(Σ))2

+ (E[X4]− 1) tr(Σ2)) + 2∥β̃∥2 1

N2T 2
(tr Ã)2 tr(Σ) tr(Σ2)

∼ 2
1

N2T 2
(β̃′Ãβ̃) (tr Ã) (tr Σ)3 + 2∥β̃∥2 1

N2T 2
(tr Ã)2 tr(Σ) tr(Σ2)

∼ 2∥β̃∥2 1

N2T 2
(tr Ã)2 tr(Σ) tr(Σ2)

(164)
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D.4 Term4 and Term5 in (142)

We have

E[(E[ε4]− 1) tr(AZtAZt) + (tr(AZt))
2]

= (E[ε4]− 1)E[
∑

λk(Ã)Xi,kλi(Σ)Xi,k1λk1(Ã)Xi1,k1λi1(Σ)Xi1,k]

+ E[(
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k)

2]

(165)

We have

E[(
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k)

2]

= E[
∑

k,k1,i,i1

λk(Ã)λk1(Ã)λi1(Σ)X
2
i1,k1

λi2(Σ)X
2
i2,k2

]

= E[
∑
k

λ2k(Ã)
∑
i1,i2

λi1λi2X
2
i1,k
X2

i2,k
] +

∑
k1 ̸=k2

λk1(Ã)λk2(Ã)(tr(Σ))
2

∼ tr(Ã2)((E[X4]− 1) tr(Σ2) + (tr Σ)2) + ((tr(Ã))2 − tr(Ã2))(tr Σ)2

(166)

Similarly,

(E[ε4]− 1)E[
∑

λk(Ã)Xi,kλi(Σ)Xi,k1λk1(Ã)Xi1,k1λi1(Σ)Xi1,k]

= (E[ε4]− 1)E[
∑
k1=k

λk(Ã)
2X2

i,kλi(Σ)λi1(Σ)X
2
i1,k

]

+ (E[ε4]− 1)E[
∑
k ̸=k1

∑
i

λk(Ã)X
2
i,kλ

2
i (Σ)X

2
i,k1
λk1(Ã)]

∼ (E[ε4]− 1) tr(Ã2)((E[X4]− 1) tr(Σ2) + (tr Σ)2) + (E[ε4]− 1)((tr(Ã))2 − tr(Ã2)) tr(Σ2)

(167)
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Thus,

Term4 + Term5 ∼ tr(Ã2)((E[X4]− 1) tr(Σ2) + (tr Σ)2) + ((tr(Ã))2 − tr(Ã2))(tr Σ)2

+ (E[ε4]− 1) tr(Ã2)((E[X4]− 1) tr(Σ2) + (tr Σ)2) + (E[ε4]− 1)((tr(Ã))2 − tr(Ã2)) tr(Σ2)

∼ (tr(Ã2)(tr Σ)2 + ((tr(Ã))2 − tr(Ã2))(tr Σ)2)
1

N2T 2

+ (E[ε4]− 1)
(
tr(Ã2)(tr Σ)2 + ((tr(Ã))2 − tr(Ã2)) tr(Σ2)

) 1

N2T 2

= (tr(Ã))2(tr Σ)2
1

N2T 2

+ (E[ε4]− 1)
(
tr(Ã2)(tr Σ)2 + ((tr(Ã))2 − tr(Ã2)) tr(Σ2)

) 1

N2T 2

∼ (tr(Ã))2(tr Σ)2/(N2T 2)

(168)

because tr(Σ2)/(tr(Σ))2 → 0.

D.5 Equating the terms

By (140),

(
1

NT
trE[APFtF

′
t ])

2 ∼ 1

T 2N2
tr(Ã)2(tr Σ + ∥β̃∥2 tr(Σ2))2

=
1

T 2N2
tr(Ã)2

(
(tr Σ)2 + 2∥β̃∥2(tr Σ) tr(Σ2) + ∥β̃∥4 (tr(Σ2))2

) (169)

and the claim follows from (153), (160), (164), and (168).

The proof of Lemma 11 is complete. □

E Proof of Theorem 8

Proof of Theorem 8. The first claim follows because, by Lemma 9, the other contributions

do not impact eigenvalue distribution.
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To prove the claim about the eigenvalue distribution of BT , we use a remarkable Theorem

of (Bai and Zhou, 2008). According to (Bai and Zhou, 2008), defining Zt = N−1/2Ft =

S ′
tRt+1, we need to verify the following technical conditions:

(1) E[ZtZ
′
t] = AP for some matrix AP

(2) E[(Z ′
tBZt − tr(APBP ))

2] = o(T 2) for any bounded matrix sequence BP , P > 0.

(3) The norm of AP is uniformly bounded, and its eigenvalue distribution converges as

P → ∞.

The only non-trivial claim here is item (3), which in turn follows from Lemma 11. The

proof of Theorem 8 is complete. □

F Technical Lemmas for Computing Higher Moments

The following lemma is a direct consequence of (142) and the polarization identity

ab = 0.25((a+ b)2 − (a− b)2) .

Lemma 14 For any two matrices A,B with A being symmetric, we have

1

N2T
E[F ′

tAFtF
′
tBFt]

=
1

N2T
trE[Ztββ

′ZtAZtββ
′ZtB]

+
1

N2T
2 tr(E[β′ZtAZtBZtβ] + E[β′ZtBZtAZtβ])

+
1

N2T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

+
1

N2T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

= Term1 + Term2 + Term3 + Term4 + Term5 .

(170)
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Proof. When A,B are symmetric, (142) implies

1

N2T
E[F ′

tAFtF
′
tBFt]

=
1

N2T
trE[Ztββ

′ZtAZtββ
′ZtB]

+
1

N2T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

+
1

N2T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

+
1

N2T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

(171)

The general case follows because

1

N2T
E[F ′

tAFtF
′
tBFt] =

1

N2T
E[F ′

t0.5(A+ A′)FtF
′
t0.5(B +B′)Ft]

=
1

N2T
trE[Ztββ

′Zt0.5(A+ A′)Ztββ
′Zt0.5(B +B′)]

+
1

N2T
2 tr(E[Ztββ

′Zt0.5(A+ A′)Zt0.5(B +B′)] + E[Ztββ
′Zt0.5(B +B′)Zt0.5(A+ A′)])

+
1

N2T
tr(E[(β′Zt0.5(A+ A′)Ztβ)Zt0.5(B +B′)] + E[(β′Zt0.5(B +B′)Ztβ)Zt0.5(A+ A′)])

+
1

N2T
((κε − 1) trE[Zt0.5(A+ A′)Zt0.5(B +B′)] + E[tr(Zt0.5(A+ A′)) tr(Zt0.5(B +B′))])

=
1

N2T
trE[Ztββ

′ZtAZtββ
′ZtB]

+
1

N2T
tr(E[β′ZtAZtBZtβ] + E[β′ZtBZtAZtβ] + E[β′ZtA

′ZtBZtβ] + E[β′ZtAZtB
′Ztβ])

+
1

N2T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

+
1

N2T
((κε − 1)0.5 tr(E[ZtAZtB] + E[ZtA

′ZtB]) + E[tr(ZtA) tr(ZtB)])

(172)

□
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Lemma 15 For any two matrices A,B, we have

1

N2T
trE[Ztββ

′ZtAZtββ
′ZtB]

∼
(
(β̃′Ãβ̃) tr(B̃) + (β̃′B̃β̃) tr(Ã)

)
∥β̃∥2 tr(Σ2)(tr(Σ))2

1

N2T

+ ∥β̃∥4((tr Ã)(tr B̃) + 2 tr(ÃB̃))(tr(Σ2))2
1

N2T

+ ∥β̃∥4E[X4] tr(Ã) tr(B̃) tr(Σ4)
1

N2T
1

N2T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

N2T
4∥β̃∥2 tr(ÃB̃) tr(Σ) tr(Σ2)

+
1

N2T
4∥β̃∥2(tr(Ã) tr(B̃)− tr(ÃB̃)) tr(Σ3)

+
1

N2T
4
(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)
tr(Σ)(tr(Σ2))

1

N2T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

N2T

(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)
(tr Σ)3 + 2∥β̃∥2 1

N2T
(tr Ã)(tr B̃) tr(Σ) tr(Σ2)

1

N2T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼
(
(tr Ã)(tr B̃) + (E[ε4]− 1) tr(ÃB̃)

)
(tr Σ)2

1

N2T

(173)

with Ã = Ψ1/2AΨ1/2 and B̃ = Ψ1/2BΨ1/2.
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Proof of Lemma 15. Using (153), (160), (164), and (168) , we get the following result:

1

N2T
trE[Ztββ

′ZtAZtββ
′ZtB] ∼ 3∥β̃∥4 tr(ÃB̃) (tr(Σ2))2

1

N2T
+ ∥β̃∥4E[X4] tr(ÃB̃) (tr(Σ4))

1

N2T

+
(
(β̃′Ãβ̃) tr(B̃) + (β̃′B̃β̃) tr(Ã)

)
∥β̃∥2

(
tr(Σ2)(tr(Σ))2 − 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
1

N2T

+ ∥β̃∥4E[X4] (tr(Ã) tr(B̃)− tr(ÃB̃)) tr(Σ4)
1

N2T

+ ∥β̃∥4((tr Ã) tr(B̃)− tr(ÃB̃))(tr(Σ2))2
1

N2T
1

N2T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

N2T
4∥β̃∥2 tr(ÃB̃)((E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2))

+
1

N2T
4∥β̃∥2(tr(Ã) tr(B̃)− tr(ÃB̃)) tr(Σ3)

+
1

N2T
4
(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)(
tr(Σ)(tr(Σ2)) + (E[X4]− 1) tr(Σ3)

)
1

N2T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

N2T

(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)
(tr Σ)3 + 2∥β̃∥2 1

N2T 2
(tr Ã)(tr B̃) tr(Σ) tr(Σ2)

1

N2T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼
(
(tr Ã)(tr B̃) + (E[ε4]− 1) tr(ÃB̃)

)
(tr Σ)2

1

N2T

+ (E[ε4]− 1)
(
(tr Ã)(tr B̃) − tr(ÃB̃)

)
tr(Σ2)

1

N2T 2

(174)
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where we have used that(
tr(Σ2)(tr(Σ))2 − 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
∼ tr(Σ2)(tr(Σ))2

(175)

□

Lemma 16 Define ψ∗,1 through the equation

b∗ψ∗,1 = N−1 tr((Σ∗
FΨ) + P−1 tr(ΨΣλ))) . (176)

Then, we have

1

TN2
trE[ββ′Ft1F

′
t1
Ft1F

′
t1
Q] ∼ 1

TN2
tr(Ψ) (tr(Σ))2(b∗ tr Σψ∗,1 + 1)E[β′ΨQβ]

for any uniformly bounded Q that is independent of F.

Proof of Lemma 16. We have

1

TN2
trE[ββ′Ft1F

′
t1
Ft1F

′
t1
Q] =

1

TN2
trE[F ′

t1
Ft1F

′
t1
Qββ′Ft1 ] (177)

and hence we are in a position to apply Lemmas 14 and 15 with the two matrices given by

A = I and B = Ψ1/2Qββ′Ψ1/2 so that Ã = Ψ and B̃ = Ψ1/2Qββ′Ψ1/2. Thus, (177) is the
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sum of the following terms:

1

N2T
trE[Ztββ

′ZtAZtββ
′ZtB]

∼
(
(β̃′Ψβ̃) tr(Ψ1/2Qββ′Ψ1/2) + (β̃′Ψ1/2Qββ′Ψ1/2β̃) tr(Ψ)

)
∥β̃∥2 tr(Σ2)(tr(Σ))2

1

N2T

+ ∥β̃∥4((trΨ)(trΨ1/2Qββ′Ψ1/2) + 2 tr(ΨΨ1/2Qββ′Ψ1/2))(tr(Σ2))2
1

N2T
1

N2T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

N2T
4∥β̃∥2 tr(ΨΨ1/2Qββ′Ψ1/2) tr(Σ) tr(Σ2)

+
1

N2T
4∥β̃∥2(tr(Ψ) tr(Ψ1/2Qββ′Ψ1/2)− tr(ΨΨ1/2Qββ′Ψ1/2)) tr(Σ3)

+
1

N2T
4
(
β̃′Ψβ̃ (trΨ1/2Qββ′Ψ1/2) + β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)

)
tr(Σ)(tr(Σ2))

1

N2T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

N2T

(
β̃′Ψβ̃ (trΨ1/2Qββ′Ψ1/2) + β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)

)
(tr Σ)3

+ 2∥β̃∥2 1

N2T
(trΨ)(trΨ1/2Qββ′Ψ1/2) tr(Σ) tr(Σ2)

1

N2T
((E[ε4]− 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼
(
(trΨ)(trΨ1/2Qββ′Ψ1/2) + (E[ε4]− 1) tr(ΨΨ1/2Qββ′Ψ1/2)

)
(tr Σ)2

1

N2T

(178)

Now, tr(ββ′D) is uniformly bounded almost surely for any bounded D. In addition, As-

sumption 4 implies that tr(Σ2) = o(tr(Σ)2) and tr(Σ3) = o(tr(Σ) tr(Σ2)) . As a result, many
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terms become negligible and we get

1

N2T
trE[Ztββ

′ZtAZtββ
′ZtB]

∼ (β̃′Ψ1/2Qββ′Ψ1/2β̃) tr(Ψ) ∥β̃∥2 tr(Σ2)(tr(Σ))2
1

N2T
1

N2T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

N2T
4β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ) tr(Σ)(tr(Σ2))

1

N2T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

N2T
β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)(tr Σ)3

1

N2T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼ (trΨ)(trΨ1/2Qββ′Ψ1/2)(tr Σ)2
1

N2T

(179)

Recall that b∗ = trE[ββ′] = tr((Σ∗
FΨ) + P−1 tr(ΨΣλ))). The first term is of the order

b3∗M tr(Σ) tr(Σ2). The second term is of the order b2∗M tr(Σ) tr(Σ2). The third term is of the

order of b2∗M(tr Σ)3 and hence it dominates the second term as well as the first term because

tr(Σ2) = o((tr(Σ))2). Thus, we are left with

1

N2T
β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)(tr Σ)3 + (trΨ)(trΨ1/2Qββ′Ψ1/2)(tr Σ)2

1

N2T

∼ 1

TN2
b∗ψ∗,1 tr(Ψ) (tr(Σ))3E[β′ΨQβ] + (trΨ)E[β′ΨQβ](tr Σ)2

1

N2T

(180)

where we have used that, by Lemma 5, β′Ψ1/2β̃ ≈ N−1 tr((Σ∗
FΨ)+P−1 tr(ΨΣλ))) The proof

of Lemma 16 is complete. □

G The Martingale Lemma and ξ(z; c)

Lemma 17 We have

λ′A1(zI +BT )
−1A2λ − E[λ′A1(zI +BT )

−1A2λ] → 0
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and

P−1 tr(A1(zI +BT )
−1A2) − P−1 trE[A1(zI +BT )

−1A2] → 0

almost surely for any bounded A1, A2 that are independent of Ft.

Proof of Lemma 17. The proof follows by the same arguments as in (Bai and Zhou, 2008).

Our first key observatiob is that the Lindenberg condition implies that ∥λ∥2 is almost surely

bounded as P → ∞.

Let BT,t =
1
T

∑
τ ̸=t FτF

′
τ . By the Sherman-Morrison formula (see (Bartlett, 1951)),

(zI+BT )
−1 = (zI+BT,t)

−1 − 1

NT
(zI+BT,t)

−1FtF
′
t(zI+BT,t)

−1 1

1 + (NT )−1F ′
t(zI +BT,t)−1Ft

(181)

Let Eτ denote the conditional expectation given Fτ+1, · · · , FT . Let also

qT (z) = λ′A1(zI +BT )
−1A2λ

With this notation, since BT,t is independent of Ft, we have

(Et−1 − Et)[λ
′A1(zI +BT,t)

−1A2λ|λ] = 0 ,
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(below we omit the conditioning on λ for the sake of simplicity) and therefore

E[qT (z)]− qT (z) = E0[qT (z)]− ET [qT (z)]

=
T∑
t=1

(Et−1[qT (z)]− Et[qT (z)])

=
T∑
t=1

(Et−1 − Et)[qT (z)]

=
T∑
t=1

(Et−1 − Et)[qT (z)− λ′A1(zI +BT,t)
−1A2λ]

=
T∑
t=1

(Et−1 − Et)[λ
′A1(zI +BT )

−1A2λ− λ′A1(zI +BT,t)
−1A2λ]

= −
T∑

τ=1

(Et−1 − Et)[γt] ,

(182)

where we have used (181) and defined

γt = λ′A1

(
1

NT
(zI +BT,t)

−1Ft(I +
1

NT
F ′
t(zI +BT,t)

−1Ft)
−1F ′

t(zI +BT,t)
−1A2λ

)
. (183)

[complete!!! Remember we need 6 moments!!]

Almost sure convergence follows with q > 2 from the following lemma.

Lemma 18 Suppose that

E[|XT |q] ≤ T−α

for some α > 1 and some q > 0. Then, XT → 0 almost surely.

Proof. It is known that if

∞∑
T=1

Prob(|XT | > ε) < ∞
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for any ε > 0, then XT → 0 almost surely. In our case, the Chebyshev inequality implies

that

Prob(|XT | > ε) ≤ ε−qE[|XT |q] ≤ T−α

and convergence follows because α > 1. □

The proof of Lemma 17 is complete □

Lemma 19 Let

1

T
tr((zI +BT )

−1Ψσ∗) → ξ(z; c) (184)

almost surely and

1

NT
F ′
t(zI +BT,t)

−1Ft → ξ(z; c) , (185)

in probability, where

c−1ξ(z; c)

1 + ξ(z; c)
= 1 − m(−z; c)z (186)

Proof. First, Lemma 11 implies that

1

NT
F ′
t(zI +BT,t)

−1Ft − 1

T
tr((zI +BT,t)

−1 1

N
E[FtF

′
t ]) → 0 .

in probability. Next Lemma 17 applied to our setting implies that for any bounded matrix

QT independent of BT,t we have

1

T
tr((zI +BT,t)

−1QT ) − 1

T
E[tr((zI +BT,t)

−1QT )] → 0
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almost surely. At the same time, by Lemma 7,

1

N
E[FtF

′
t ] = ((tr Σ/N)2N + tr(Σ2/N))ΨN−1ΣFΨ

+ tr(Σ2/N)(κ− 2)Ψ1/2 diag(Ψ1/2N−1ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(ΣΣε/N) + tr(ΨN−1ΣF ) tr(Σ

2/N)
)

(187)

We have

1

T
tr((zI +BT,t)

−1(tr Σ/N)2ΨΣ∗
FΨ) = O(1/T ) (188)

The same argument applies to the second term because the trace of

tr(Σ2/N)(κ− 2)Ψ1/2 diag(Ψ1/2N−1ΣFΨ
1/2)Ψ1/2

is also uniformly bounded. Thus, we get

1

NT
F ′
t(zI +BT,t)

−1Ft ∼ 1

T
tr((zI +BT,t)

−1 1

N
E[FtF

′
t ])

∼ T−1 tr[(zI +BT,t)
−1Ψσ∗] → ξ(z; c) .

(189)

Now, we have

1 = P−1 trE[(zI +BT )
−1(zI +BT )]

= zm(−z; c) +
1

P
tr

1

T

∑
t

1

N
E[(zI +BT )

−1FtF
′
t ]

= zm(−z; c) + 1

P
tr

1

N
E[(zI +BT )

−1FtF
′
t ]

(190)

where we have used symmetry across t in the last step. Using the Sherman-Morrison formula,
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we get

1

NT
trE[(zI +BT )

−1F ′
tFt] = E[

1
NT
F ′
t(zI +BT,t)

−1Ft

1 + 1
NT
F ′
t(zI +BT,t)−1Ft

] ,

where

BT,t =
1

NT

∑
τ ̸=t

FτF
′
τ .

Furthermore, since all functions involved are uniformly bounded, a standard argument

implies that we can replace

1

NT
F ′
t(zI +BT,t)

−1Ft

with

ξ(z; c)

by (189).19 □

H Expected Return on the Feasible Portfolio

Proposition 10 We have

E[RF
t+1(z)] =

Γ1,1(z)

1 + ξ(z; c)
, (191)

19Indeed, E[ YT

1+YT
− ZT

1+ZT
] = YT−ZT

(1+YT )(1+ZT ) for any random variables YT , ZT . If YT , ZT ≥ 0 then
|YT−ZT |

(1+YT )(1+ZT ) ≤ 1 and hence convergence YT − ZT → 0 in probability implies convergence of expectations.
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where

Γ1,1(z) = lim
T,P→∞

λ′E[Ψ(zI +BT )
−1Ψ]λ . (192)

Proof of Proposition 10. We start by computing

E[Ft+1] = E[S ′
tRt+1] = E[S ′

t(StF̃t+1 + εt+1)] = N−1/2 tr(Σ)Ψλ (193)

and therefore, by (86), we have

E[RF
t+1(z)] = E[β̂(z)′Ft+1]

= tr(Σ)E[
1

NT

∑
t

F ′
t(zI +BT )

−1]Ψλ ∼ E[
1

T

∑
t

F ′
t(zI +BT )

−1]ΨλN−1/2 ,
(194)

where we have used the normalization N−1 tr Σ = 1. Now, by the interchangeability of Ft

across t and the Sherman-Morrison formula, we have

N−1/2E[
1

T

∑
t

F ′
t(zI +BT )

−1]Ψλ

= N−1/2E[F ′
t(zI +BT )

−1Ψ]λ = N−1/2E[F ′
t(zI +BT,t)

−1 1

1 + (NT )−1F ′
t(zI +BT,t)−1Ft

Ψ]λ ,

(195)

where

BT,t =
1

NT

∑
τ ̸=t

FτF
′
τ .

By Lemma 19,

(NT )−1F ′
t(zI +BT,t)

−1Ft → ξ(z; c)
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is probability and therefore

N−1/2E[F ′
t(zI +BT,t)

−1 1

1 + (NT )−1F ′
t(zI +BT,t)−1Ft

Ψ]λ ∼ N−1/2E[F
′
t(zI +BT,t)

−1Ψλ]

1 + ξ(z; c)
,

(196)

whereas E[F ′
t ] = tr(ΣΣε)ΨλN

−1/2 implies

N−1/2E[F ′
t(zI +BT,t)

−1Ψλ] = N−1 tr(Σ)λ′E[Ψ(zI +BT,t)
−1Ψλ] ∼ Γ1,1(z) . (197)

The proof of Proposition 10 is complete.

□

I Computing the Quasi-Moments

Lemma 20 Let

ψ∗,k = limP−1 tr(ΨkΣλ) (198)

and

Γk,l,T (z) ≡ λ′E[Ψk(zI +BT )
−1Ψℓ]λ . (199)

We have

ψ∗,k+ℓ ∼ z Γk,ℓ,T (z) +

(
ψ∗,k+1Γ1,ℓ,T (z) + σ∗Γk+1,ℓ,T

)
(1 + ξ(z; c))−1 (200)

Proof of Lemma 20. Using the Sherman-Morrison formula and Lemma 19, we get

F ′
t(zI+BT )

−1 = F ′
t(zI+BT,t)

−1(1+(NT )−1F ′
t(zI+BT,t)

−1Ft)
−1 ∼ F ′

t(zI+BT,t)
−1(1+ξ(z; c))−1
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We also have

1

N
E[FtF

′
t ] = ((tr Σ/N)2 + tr(Σ2/N2))ΨΣFΨ

+ tr(Σ2/N2)(κ− 2)Ψ1/2 diag(Ψ1/2ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(ΣΣε/N) + tr(ΨΣFN

−1) tr(Σ2/N)
)

= Σ̂F +ΨΣFΨ + σ∗Ψ ,

(201)

where ∥Σ̂F∥ = o(1), and

ΣF = λλ′ + Σ∗
F . (202)

We will need the following important observation:

Lemma 21 For any sequence

λ′APQPλ → 0 (203)

in probability, for any uniformly bounded QP (even if they correlate with λ) and any AP with

a uniformly bounded trace norm, such that AP is independent of λ.

Proof of Lemma 21. We have

λ′APQPλ = tr(λλ′APQP )

≤ ∥λλ′APQP∥1 ≤ ∥QP∥∞∥λλ′AP∥1

= ∥QP∥∞ tr((λλ′APA
′
Pλλ

′)1/2) = ∥QP∥∞(λ′APA
′
Pλ)

1/2 tr((λλ′)1/2) = (λ′APA
′
Pλ)

1/2∥λ∥

= (tr(APA
′
Pλλ

′))1/2∥λ∥ → (P−1 tr(Σλ))
1/2(P−1 tr(APA

′
PΣλ))

1/2

≤ (P−1 tr(Σλ))
1/2∥Σλ∥1/2(P−1 tr(APA

′
P ))

1/2 → 0

(204)
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The proof of Lemma 21 is complete. □

Thus, for any AP with bounded trace norm, we get

ψ∗,k+ℓ = P−1 tr(Ψk+ℓΣλ) ≈ λ′Ψk+ℓλ = λ′E[Ψk(zI +BT )(zI +BT )
−1Ψℓ]λ

= zΓk,ℓ,T (z) + λ′E[ΨkBT (zI +BT )
−1Ψℓ]λ

=︸︷︷︸
symmetry over t

zΓk,ℓ,T (z) +
1

N
λ′E[ΨkFtF

′
t(zI +BT )

−1Ψℓ]λ

=︸︷︷︸
(99)

zΓk,ℓ,T (z) +
1

N
λ′E[ΨkFtF

′
t(zI +BT,t)

−1(1 + (NT )−1F ′
t(zI +BT,t)

−1Ft)
−1Ψℓ]λ

∼︸︷︷︸
Lemma 19

zΓk,ℓ,T (z) +
1

N
λ′E[ΨkFtF

′
t(zI +BT,t)

−1Ψℓ]λ(1 + ξ(z; c))−1

∼︸︷︷︸
(201)

zΓk,ℓ,T (z) + λ′E[Ψk(Σ̂F +ΨΣFΨ + σ∗Ψ)(zI +BT,t)
−1Ψℓ]λ(1 + ξ(z; c))−1

∼ zΓk,ℓ,T (z) + λ′E[Ψk(Ψ(ΣF + λλ′)Ψ + σ∗Ψ)(zI +BT )
−1Ψℓ]λ(1 + ξ(z; c))−1

∼︸︷︷︸
(203)

zΓk,ℓ,T (z) + λ′E[Ψk(Ψλλ′Ψ + σ∗Ψ)(zI +BT )
−1Ψℓ]λ(1 + ξ(z; c))−1

= zΓk,ℓ,T (z) + λ′Ψk+1λE[λ′Ψ(zI +BT )
−1Ψℓ]λ(1 + ξ(z; c))−1

+ λ′Ψk+1σ∗(zI +BT )
−1Ψℓλ(1 + ξ(z; c))−1

∼ z Γk,ℓ,T (z) +

(
ψ∗,k+1Γ1,ℓ,T (z) + σ∗Γk+1,ℓ,T

)
(1 + ξ(z; c))−1

(205)

□

Lemma 22 Let

δ(z) = −σ∗z−1(1 + ξ(z; c))−1 . (206)

Then,

Γ1,l(z) =
z−1P−1 tr(Ψ1+ℓ(I −Ψδ(z))−1Σλ)

1− δ(z)P−1 tr(Ψ2(I −Ψδ(z))−1Σλ)
(207)
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and

Γk,ℓ = z−1P−1 tr(Ψk+ℓ(I−Ψδ(z))−1Σλ)−z−1P−1 tr(Ψk+1(I−Ψδ(z))−1Σλ)Γ1,ℓ(1+ξ(z; c))
−1

(208)

Proof. We have

Γk,ℓ = ak+1 + δ Γk+1,ℓ (209)

where

ak+1,ℓ = z−1(ψ∗,k+ℓ − ψ∗,k+1Γ1,ℓ(1 + ξ(z; c))−1), δ(z) = −σ∗z−1(1 + ξ(z; c))−1 . (210)

Let us pick z > max(1, ∥Ψ∥) sufficiently large, so that σ∗z
−1(1 + ξ(z; c))−1 < 1 and20

|δkΓk,ℓ(z)| ≤ z−k+1∥λ∥2∥Ψ∥k+ℓ →k→∞ 0 . (211)

Then, since iterating forward, we get

Γk,ℓ =
∞∑
τ=0

ak+τ+1,ℓδ
τ . (212)

Now,

ak+τ+1,ℓ = z−1(ψ∗,k+τ+ℓ−ψ∗,k+τ+1Γ1,ℓ(1+ξ(z; c))
−1), δ(z) = −σ∗z−1(1+ξ(z; c))−1 . (213)

20This uniform exponential decay also implies that the infinite sum of the limits equals the limit of the
infinite sum, as we pass to the P → ∞ limit.
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Γ1,ℓ =
∞∑
τ=0

aτ+2,ℓδ
τ

=
∞∑
τ=0

z−1(ψ∗,1+τ+ℓ − ψ∗,1+τ+1Γ1,ℓ(1 + ξ(z; c))−1)δτ

=
∞∑
τ=0

(z−1(P−1 tr(Ψτ+ℓ+1Σλ)− P−1 tr(Ψτ+2Σλ)Γ1,ℓ(1 + ξ(z; c))−1))δτ

= z−1P−1 tr(Ψ1+ℓ(I −Ψδ(z))−1Σλ)− z−1P−1 tr(Ψ2(I −Ψδ(z))−1Σλ)Γ1,ℓ(1 + ξ(z; c))−1 ,

(214)

implying that

Γ1,l =
z−1P−1 tr(Ψ1+ℓ(I −Ψδ(z))−1Σλ)

1− δ(z)P−1 tr(Ψ2(I −Ψδ(z))−1Σλ)
(215)

Then, the same argument implies

Γk,ℓ = z−1P−1 tr(Ψk+ℓ(I−Ψδ(z))−1Σλ)−z−1P−1 tr(Ψk+1(I−Ψδ(z))−1Σλ)Γ1,ℓ(1+ξ(z; c))
−1

(216)

□

Proof of Lemma 34. We are using the representation of returns where the missing factors

are absorbed into ε. As we show in (??), it does not affect σ∗, and the cross-terms are

negligible by the tr(Ψ1,2Ψ2,1) = o(P ) condition, and therefore all calculations stay the same:
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ψ∗,k+ℓ(q) = P−1 tr(Ψk+ℓ
1,1 Σ

(1)
λ )) ≈ (λ(1))′Ψk+ℓ

1,1 (λ(1)) = (λ(1))′E[Ψk
1,1(zI +B

(1)
T )(zI +B

(1)
T )−1Ψℓ

1,1](λ
(1))

= zΓk,ℓ,T (z) + (λ(1))′E[Ψk
1,1B

(1)
T (zI +B

(1)
T )−1Ψℓ

1,1](λ
(1))

=︸︷︷︸
symmetry over t

zΓk,ℓ,T (z)

+
1

N
(λ(1))′E[Ψk

1,1FtF
′
t(zI +B

(1)
T )−1Ψℓ

1,1](λ
(1))

=︸︷︷︸
(99)

zΓk,ℓ,T (z)

+
1

N
(λ(1))′E[Ψk

1,1FtF
′
t(zI +BT,t)

−1(1 + (NT )−1F ′
t(zI +BT,t)

−1Ft)
−1Ψℓ

1,1](λ
(1))

∼︸︷︷︸
Lemma 19

zΓk,ℓ,T (z) +
1

N
(λ(1))′E[Ψk

1,1FtF
′
t(zI +BT,t)

−1Ψℓ
1,1](λ

(1))(1 + ξ(z; cq))−1

∼︸︷︷︸
(201)

zΓk,ℓ,T (z) + (λ(1))′E[Ψk
1,1(Σ̂

(1)
F +Ψ1,1Σ

(1)
F Ψ1,1 + σ∗Ψ1,1)(zI +BT,t)

−1Ψℓ
1,1](λ

(1))(1 + ξ(z; cq))−1

∼ zΓk,ℓ,T (z) + (λ(1))′E[Ψk
1,1(Ψ1,1(Σ

(1)
F + (λ(1))(λ(1))′)Ψ1,1 + σ∗Ψ1,1)(zI +BT )

−1Ψℓ
1,1](λ

(1))(1 + ξ(z; cq))−1

∼︸︷︷︸
(203)

zΓk,ℓ,T (z) + (λ(1))′Ψk+1
1,1 (λ(1))E[(λ(1))′Ψ1,1(zI +BT )

−1Ψℓ
1,1](λ

(1))(1 + ξ(z; cq))−1

+ (λ(1))′E[Ψk
1,1σ∗Ψ1,1(zI +BT )

−1Ψℓ
1,1](λ

(1))(1 + ξ(z; cq))−1

∼ z Γk,ℓ,T (z) +

(
ψ∗,k+1(q)Γ1,ℓ,T (z) + σ∗Γk+1,ℓ,T

)
(1 + ξ(z; cq))−1

(217)

and the claim follows by the same argument as in the correctly specified case. □
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J Proof of Theorem 3: Second Moment of the Feasible Efficient

Portfolio

Let

Ft =
∑
t

Ft .

Without loss of generality, we assume that κ = 2 because all kurtosis terms vanish asymp-

totically due to their vanishing trace norm. Using Assumption ?? and Lemma 7, we get21

E[(RF
t+1(z))

2] = E[
1

NT
Ft

′
(zI +BT )

−1Ft+1F
′
t+1(zI +BT )

−1 1

NT
Ft]

= E[
1

NT
Ft

′
(zI +BT )

−1Et−[Ft+1F
′
t+1](zI +BT )

−1 1

NT
Ft]

=︸︷︷︸
Lemma 7

E[
1

NT
Ft

′
(zI +BT )

−1

(
((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ+Ψ

(
tr(ΣΣε) + tr(ΨN−1ΣF ) tr(Σ

2)
))

(zI +BT )
−1 1

NT
Ft]

≈ E[
1

NT
Ft

′
(zI +BT )

−1

(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

))
(zI +BT )

−1 1

NT
Ft]

=
1

N2T 2

∑
t1,t2

E[Ft1(zI +BT )
−1

(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft2 ]

∼ Term1 + Term2

(218)

21Et− denotes the expectation averaging over realizations of St and Rt+1.

104



with

Term1 =
1

N2T
E[F ′

t1
(zI +BT )

−1
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft1 ] (219)

and

Term2 =
1

N2

T (T − 1)

T 2
E[F ′

t1
(zI +BT )

−1
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft2 ]

(220)

for any t1 ̸= t2.

J.1 Term1 in (219)

We first deal with the first term. Using the Sherman-Morrison formula and Lemma 19, and

Lemma 7, we get

Term1 =
1

N2T
trE[

(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1]

∼ 1

N2T
trE[

(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1)

−1Ft1F
′
t1
(zI +BT,t1)

−1](1 + ξ(z; c))−2

∼ 1

N2T
trE[

(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1)

−1](1 + ξ(z; c))−2

(221)

We can now split this expression into several terms. We have

1

N2T
trE[(tr Σ)2ΨN−1ΣFΨ(zI +BT,t)

−1(tr Σ)2ΨN−1ΣFΨ(zI +BT,t)
−1](1 + ξ(z; c))−2

=
1

T
trE[ΨΣFΨ(zI +BT,t)

−1ΨΣFΨ(zI +BT,t)
−1](1 + ξ(z; c))−2 → 0

(222)
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because

tr(ΣF ) = tr(Σ∗
F ) + P−1∥λ∥2 = o(P ) + O(1) = o(T ) ,

and all other matrices involved are uniformly bounded. The second term is

1

N2T
trE[(tr Σ)2ΨN−1ΣFΨ(zI +BT,t)

−1 tr(ΣΣε)Ψ(zI +BT,t)
−1]/(1 + ξ(z; c))2 = O(T−1)

(223)

by the same argument. Finally, the last term is

1

N2
(tr(ΣΣε))

2 1

T
trE[Ψ(zI +BT,t)

−1Ψ(zI +BT,t)
−1]/(1 + ξ(z; c))2 (224)

and it needs to be evaluated directly.

Lemma 23 We have

1

PN2
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]

∼ σ2
∗
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1]

→ Γ3(z) =
(
1− (−z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

)
)
(1 + ξ(z; c))4

(225)

Proof. We have by the Sherman-Morrison formula that

1

P

1

N2T
trE[Ft1F

′
t1
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1]

∼ 1

c

1

N2T 2
E[F ′

t1
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1Ft1 ]

= c−1E

[( 1
NT
F ′
t1
(zI +BT,t1)

−1Ft1

1 + 1
NT
F ′
t1(zI +BT,t1)

−1Ft1

)2
]

∼ c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

(226)
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by Lemma 19. Now,

m′(−z; c) = limP−1 trE[(zI +BT )
−2] (227)

and hence

1 =
1

P
trE[(zI +BT )(zI +BT )

−1(zI +BT )(zI +BT )
−1]

=
1

P
z2 trE[(zI +BT )

−2] + 2z
1

P
trE[(zI +BT )

−2BT ]

+
1

P
trE[BT (zI +BT )

−1BT (zI +BT )
−1]

∼ z2m′(−z; c) + 2z
1

P
trE[(zI +BT )

−2(BT + zI − zI)]

+
1

P

1

N2T 2

∑
t1,t2

trE[Ft1F
′
t1
(zI +BT )

−1Ft2F
′
t2
(zI +BT )

−1]

= −z2m′(−z; c) + 2zm(−z; c) + 1

P

1

N2T
trE[Ft1F

′
t1
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1]

+
1

P

1

N2

T (T − 1)

T 2
trE[Ft1F

′
t1
(zI +BT )

−1Ft2F
′
t2
(zI +BT )

−1]

∼ −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P

1

N2
trE[Ft1F

′
t1
(zI +BT )

−1Ft2F
′
t2
(zI +BT )

−1]

∼ −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P

1

N2
trE[Ft1F

′
t1
(zI +BT,t1)

−1Ft2F
′
t2
(zI +BT,t2)

−1]/(1 + ξ(z; c))2

∼ −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P

1

N2
E[F ′

t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1Ft1 ]/(1 + ξ(z; c))4

= −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P

1

N2
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]/(1 + ξ(z; c))4

(228)
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where we have defined

BT,t1,t2 =
1

NT

∑
τ ̸∈{t1,t2}

FτF
′
τ . (229)

We also used that

F ′
t1
(zI +BT )

−1 ∼ F ′
t1
(zI +BT,t1)

−1/(1 + ξ(z; c))

by Lemma 19 and the Sherman-Morrison formula.

Now,

1

P

1

N2
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]

=
1

P

1

N2
trE[

(
((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ

+Ψ
(
tr(ΣΣε) + tr(N−1ΣFΨ) tr(Σ2)

))
(zI +BT,t1,t2)

−1

(
((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ

+Ψ
(
tr(ΣΣε) + tr(N−1ΣFΨ) tr(Σ2)

))
(zI +BT,t1,t2)

−1]

(230)

which coincides with the expression in (221). By the derivations in formulas (222) and (223),

we get

1

PN2
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]

∼ σ2
∗
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1] ,

(231)
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and hence

1 = −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+ σ2
∗
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1]/(1 + ξ(z; c))4

(232)

Finally,

ξ(z; c)

1 + ξ(z; c)
= c(1− zm(−z; c)) (233)

The proof of Lemma 23 is complete. □

We conclude that the first term from (218) characterized in (221) satisfies

Term1 =
1

N2T
E[F ′

t1
(zI +BT )

−1
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft1 ]

∼ (1 + ξ(z; c))−2cΓ3(z)

(234)

because 1/T ∼ c/P.
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J.2 Term2 in (220)

We now proceed with the second term (220). By the Sherman-Morrison formula and Lemma

19,

1

N2
E[F ′

t1
(zI +BT )

−1
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft2 ]

∼ 1

N2
E[F ′

t1
(zI +BT,t1)

−1
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t2)

−1Ft2 ]/(1 + ξ(z; c))2

∼ 1

N2
E[F ′

t1

(
(zI +BT,t1,t2)

−1 −
1

NT
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

1 + 1
NT
F ′
t2(zI +BT,t1,t2)

−1Ft2

)
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)(
(zI +BT,t1,t2)

−1

−
1

NT
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(zI +BT,t1,t2)

−1Ft1

)
Ft2 ]/(1 + ξ(z; c))2

= Term1 + Term2 + Term3

(235)

where

Term1 =
1

N2
E[F ′

t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1,t2)

−1Ft2 ]/(1 + ξ(z; c))2

Term2 = − 1

N2
2E[F ′

t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(zI +BT,t1,t2)
−1Ft1F

′
t1
(zI +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

Term3 =
1

N2
E[F ′

t1

1
NT

(zI +BT,t1,t2)
−1Ft2F

′
t2
(zI +BT,t1,t2)

−1

1 + 1
NT
F ′
t2(zI +BT,t1,t2)

−1Ft2(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

) 1
NT

(zI +BT,t1,t2)
−1Ft1F

′
t1
(zI +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

(236)
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We now analyze each term separately.

J.3 Term1 in (236)

We will need the following lemma.

Lemma 24 We have

F (A) = λ′E[(zI +BT )
−1A(zI +BT )

−1]λ → 0 (237)

for any A with uniformly bounded trace norm, with A independent of λ.

Proof of Lemma 24. We know from Lemma 21 that λ′E[A(zI + BT )
−1]λ → 0. Further-
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more,

λ′E[A(zI +BT )
−1]λ = λ′E[(zI +BT )

−1(zI +BT )A(zI +BT )
−1]λ

=︸︷︷︸
symmetry

zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ +
1

NT
λ′E[(zI +BT )

−1FtF
′
tA(zI +BT )

−1λ]

= zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ

+ N−1E[
(
(zI +BT,t)

−1 −
1

NT
(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1

1 + 1
NT
F ′
t(zI +BT,t)−1Ft

)
FtF

′
tA(zI +BT )

−1λ]

≈ zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ + (1 + ξ(z; c))−1N−1λ′E[(zI +BT,t)
−1FtF

′
tA

×
(
(zI +BT,t)

−1 −
1

NT
(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1

1 + ξ(z; c)

)
λ]

= zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ

+ (1 + ξ(z; c))−1N−1λ′E[(zI +BT,t)
−1
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
A(zI +BT,t)

−1]λ

− (1 + ξ(z; c))−2N−1λ′E[(zI +BT,t)
−1FtF

′
tA

1

NT
(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1]λ

≈ zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ

+ (1 + ξ(z; c))−1N−1λ′E[(zI +BT,t)
−1
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
A(zI +BT,t)

−1]λ

−Q(z)(1 + ξ(z; c))−2N−1λ′E[(zI +BT,t)
−1FtF

′
t(zI +BT,t)

−1]λ

(238)

where

Q(z) = F ′
tA

1

NT
(zI +BT,t)

−1Ft → T−1 trE[ΨA(zI +BT,t)
−1] → 0 (239)

because ∥A∥1 = o(P ) by assumption, and

λ′E[(zI +BT,t)
−1FtF

′
t(zI +BT,t)

−1]λ

= N−1λ′E[(zI +BT,t)
−1
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t)

−1]λ = O(1) .
(240)
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Thus, we get

o(1) ≈ zF (A) + (1 + ξ(z; c))−1 F ((ΨΣFΨ+Ψ)A) (241)

where o(1) is uniform, and the same iterative argument as in the proof of Lemma 22

give a power series representation for F ((ΨΣFΨ + Ψ)kA) for all k, and the same uniform

boundedness argument implies that F (A) = 0. The proof of Lemma 24 is complete. □

Now, E[Ft] = N−1/2 tr(ΣΣε)Ψλ and therefore

(1 + ξ(z; c))2Term1 =
1

N2
E[F ′

t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1,t2)

−1Ft2 ]

∼ 1

N3
(tr(Σ))2λ′ΨE[(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1(Σ∗

F + λλ′)Ψ + Ψ tr(ΣΣε)
)
(zI +BT,t1,t2)

−1]Ψλ

=
1

N4
(tr(Σ))2λ′ΨE[(zI +BT,t1,t2)

−1(tr Σ)2ΨΣ∗
FΨ(zI +BT,t1,t2)

−1]Ψλ

+
1

N4
(tr(Σ))2λ′ΨE[(zI +BT,t1,t2)

−1(tr Σ)2Ψλλ′Ψ(zI +BT,t1,t2)
−1]Ψλ

+
1

N3
(tr(Σ))2λ′ΨE[(zI +BT,t1,t2)

−1(tr ΣΣε)Ψ(zI +BT,t1,t2)
−1]Ψλ

∼ Γ1,1(z)
2 + Γ4,T (z) ,

(242)

where Γ4 is defined in the following lemma.

Lemma 25 We have

σ∗λ
′ΨE[(zI +BT,t1,t2)

−1Ψ(zI +BT,t1,t2)
−1]Ψλ = Γ4,T (z)

→ Γ4(z) =
Γ1,1(z) + zΓ′

1,1(z)− (Γ1,1(z))
2(1 + ξ(z; c))−2

(1 + ξ(z; c))−2

(243)

Proof. We have by the symmetry across t and the Sherman-Morrison formula and Lemma
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19 that

Γ1,1(z) ∼ λ′E[Ψ(zI +BT )
−1Ψ]λ = λ′E[Ψ(zI +BT )

−1(zI +BT )(zI +BT )
−1Ψ]λ

= z λ′E[Ψ(zI +BT )
−1(zI +BT )

−1Ψ]λ + λ′E[Ψ(zI +BT )
−1BT (zI +BT )

−1Ψ]λ

= −z Γ′
1,1,T (z) + λ′E[Ψ(zI +BT )

−1 1

NT

∑
t

FtF
′
t(zI +BT )

−1Ψ]λ

= −z Γ′
1,1,T (z) +

1

N
λ′E[Ψ(zI +BT )

−1FtF
′
t(zI +BT )

−1Ψ]λ

∼ −z Γ′
1,1,T (z) +

1

N
λ′E[Ψ(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−2

= −z Γ′
1,1,T (z)

+
1

N
λ′E[Ψ(zI +BT,t)

−1

(
((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ

+ Ψ
(
tr(ΣΣε) + tr(N−1ΣFΨ) tr(Σ2)

))
(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−2

∼ −z Γ′
1,1,T (z) + (Γ1,1(z))

2(1 + ξ(z; c))−2

+ Γ4,T (z)(1 + ξ(z; c))−2

(244)

The claim follows now because Γ′
1,1,T (z) → Γ′

1,1(z) by standard properties of analytic func-

tions. The proof of Lemma 25 is complete. □
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J.4 Term2 in (236)

The next term in (236) is (note the factor of 2 as it appears two times):

Term2 = − 1

N2
2E[F ′

t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(zI +BT,t1,t2)
−1Ft1F

′
t1
(zI +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

= − 1

N2
2E[F ′

t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(zI +BT,t1,t2)
−1Ft1F

′
t1
(zI +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(zI +BT,t1,t2)

−1Ft1

ΨλN−1/2] tr(Σ)/(1 + ξ(z; c))2

∼ −2
1

N
E[F ′

t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(zI +BT,t1,t2)
−1Ft1F

′
t1
(zI +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(zI +BT,t1,t2)

−1Ft1

ΨλN−1/2]/(1 + ξ(z; c))2

= −2(1 + ξ(z; c))−2E[XTYT ],

(245)

where we have used that

E[Ft2 ] = ΨλN−1/2 , (246)

and where

YT = N−1/2F ′
t1
(zI +BT,t1,t2)

−1λ

XT = N−1F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(zI +BT,t1,t2)
−1Ft1

1 + 1
NT
F ′
t1(zI +BT,t1,t2)

−1Ft1

(247)
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We will need the following technical lemma whose proof follows directly from the Cauchy-

Schwarz inequality.

Lemma 26 If XT → X in probability and is uniformly bounded and E[Y 2
T ] is uniformly

bounded. Then,

E[(XT −X)YT ] → 0

Then, we will need

Lemma 27 We have

E[(YT )
2]

is uniformly bounded in L2, whereas

E[YT ] = E[
1

N1/2
F ′
t1
(zI +BT,t1,t2)

−1Ψλ] → Γ1,1(z) . (248)

Proof. Recall that

λ′Ψk(zI +BT )
−1Ψℓλ → Γk,l(z) (249)

by Lemma 17 and 22.
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We have

1

N
E[
(
F ′
t1
(zI +BT,t1,t2)

−1Ψλ
)2
]

=
1

N
E[F ′

t1
(zI +BT,t1,t2)

−1Ψλλ′(zI +BT,t1,t2)
−1Ft1 ]

=
1

N
trE[(zI +BT,t1,t2)

−1Ψλλ′(zI +BT,t1,t2)
−1Ft1F

′
t1
]

∼ 1

N
trE[(zI +BT,t1,t2)

−1Ψλλ′(zI +BT,t1,t2)
−1(

(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)
)
]

= E[λ′(zI +BT,t1,t2)
−1Ψ(Σ∗

F + λλ′)Ψ(zI +BT,t1,t2)
−1Ψλ]

+ E[λ′(zI +BT,t1,t2)
−1Ψ(zI +BT,t1,t2)

−1Ψλ]

∼ Γ1(z)Γ1,1(z) + Γ3(z)

(250)

by Lemma 23 (and Lemma 24 makes sure that the Σ∗
F contribution is zero).

The proof of Lemma 27 is complete. □

Recall that

YT =
1

N1/2
F ′
t1
(zI +BT,t1,t2)

−1Ψλ

and

XT = N−1F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(zI +BT,t1,t2)
−1Ft1

1 + 1
NT
F ′
t1(zI +BT,t1,t2)

−1Ft1

(251)

Now, we know from the proof of Lemma 11 that

1

NT
F ′
tAFt −

1

NT
tr(AE[FtF

′
t ]) → 0
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in L2 and

N−1F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

) 1

NT
(zI +BT,t1,t2)

−1Ft1

∼ 1

T
trE[(zI +BT,t1,t2)

−1
(
Ψ(Σ∗

F + λλ′)Ψ + σ∗Ψ
)

× (zI +BT,t1,t2)
−1
(
Ψ(Σ∗

F + λλ′)Ψ + σ∗Ψ
)
]

∼︸︷︷︸
(203) and Lemma 24

1

T
trE[(zI +BT,t1,t2)

−1
(
Ψλλ′Ψ+ σ∗Ψ

)
× (zI +BT,t1,t2)

−1
(
Ψλλ′Ψ+ σ∗Ψ

)
]

∼ 1

T
trE[(zI +BT,t1,t2)

−1Ψλλ′Ψ(zI +BT,t1,t2)
−1Ψλλ′Ψ]

+ 2
1

T
trE[(zI +BT,t1,t2)

−1Ψλλ′Ψ(zI +BT,t1,t2)
−1Ψσ∗]

+ σ2
∗
1

T
trE[(zI +BT,t1,t2)

−1Ψ(zI +BT,t1,t2)
−1Ψ]

∼ cΓ3(z)

(252)

by Lemma (23) because the λ-terms are O(T−1). Furthermore, XT is uniformly bounded by

the Cauchy-Schwarz inequality. Thus,

XT → cΓ3(z)

1 + ξ(z; c)

and

E[YT ] → Γ1,1(z)

118



by Lemma 27, and Lemma 26 and formula (245) imply that

Term2 ∼ −2
cΓ3(z)Γ1,1(z)

(1 + ξ(z; c))3
. (253)

J.5 Term3 in (236)

Finally, we now deal with Term3 in (236).

Lemma 28 Term3 in (236) converges to zero.

Proof of Lemma 28. We have

Term3 =
1

N2
E[F ′

t1

1
NT

(zI +BT,t1,t2)
−1Ft2F

′
t2
(zI +BT,t1,t2)

−1

1 + 1
NT
F ′
t2(zI +BT,t1,t2)

−1Ft2(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

) 1
NT

(zI +BT,t1,t2)
−1Ft1F

′
t1
(zI +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

= E[XTYT ] /(1 + ξ(z; c))2 ,

(254)

where we have defined

XT =

(
1

NT
F ′
t1
(zI +BT,t1,t2)

−1Ft2

)2
(1 + 1

NT
F ′
t1(zI +BT,t1,t2)

−1Ft1)(1 +
1

NT
F ′
t2(zI +BT,t1,t2)

−1Ft2)

and

YT =
1

N
F ′
t2
(zI +BT,t1,t2)

−1

(
ΨΣFΨ + σ∗Ψ

)
(zI +BT,t1,t2)

−1Ft1 .

The first observation is that XT is uniformly bounded by the Cauchy-Schwarz inequality and

has a O(1/T ) L2-norm by Lemma 29. Since the first component of YT ,

1

N
F ′
t2
(zI +BT,t1,t2)

−1ΨΣFΨ(zI +BT,t1,t2)
−1Ft1 .
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has a o(T ) L2-norm, we get that this part is negligible by Lemma 26.

Lemma 29 We have that

E[(
1

N
F ′
t1
AFt2)

2] = O(∥A∥1 ∥A∥∞) .

for any A. Thus,

(
1

NT
F ′
t1
(zI +BT,t1,t2)

−1Ft2

)2

converges to zero in L1, while

1

N
F ′
t2
(zI +BT,t1,t2)

−1ΨΣFΨ(zI +BT,t1,t2)
−1Ft1

has a uniformly bounded L2-norm because tr(ΣF ) = o(T ).

Proof. We have

E[(N−1F ′
t1
AFt2)

2] = N−2E[F ′
t1
AFt2F

′
t2
AFt1 ]

= N−2 trE[AFt2F
′
t2
AFt1F

′
t1
]

∼ trE[A

(
ΨΣFΨ + σ∗Ψ

)

× A

(
ΨΣFΨ + σ∗Ψ

))
]

(255)

The proof of Lemma 29 is complete. □

Lemma 30 We have

E[(N−1F ′
t1
AFt2)

4] = O(P 2)

120



for any uniformly bounded A.

Indeed, Lemma 30 implies that

E[X2
T ] ≤ T−4E[(N−1F ′

t1
(zI +BT,t1,t2)

−1Ft2)
4] = O(P 2/T 4)

while Lemma 29 implies that

E[Y 2
T ] = O(P ) .

Thus,

|E[XTYT ]|2 ≤ E[X2
T ]E[Y

2
T ] = O(P 2/T 4)O(P ) → 0

and the claim follows.

Proof of Lemma 30. Without loss of generality, we may assume that A is symmetric.

Recall that

Rt = St−1βt + εt, (256)

and

Ft = S ′
t−1Rt = S ′

t−1St−1βt + S ′
t−1εt = Ztβ + S ′

t−1εt (257)

and therefore

FtF
′
t = Ztββ

′Zt + S ′
t−1εtβ

′Zt + Ztβε
′
tSt−1 + S ′

t−1εtε
′
tSt−1 . (258)
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and formula (142) applied to t = t1 implies

E[(F ′
t1
AFt2)

4] = E[F ′
t1
AFt2F

′
t2
AFt1F

′
t1
AFt2F

′
t2
AFt1 ]

= trE[Ft1F
′
t1
AFt2F

′
t2
AFt1F

′
t1
AFt2F

′
t2
A]

= trE[Zt1ββ
′Zt1AFt2F

′
t2
AZt1ββ

′Zt1AFt2F
′
t2
A]

+ trE[Zt1ββ
′Zt1AFt2F

′
t2
AZt1AFt2F

′
t2
A]

+ 2 trE[(β′Zt1AFt2F
′
t2
AZt1β)Zt1AFt2F

′
t2
A]

+ ((κε − 1) trE[Zt1AFt2F
′
t2
AZt1AFt2F

′
t2
A]

+ E[tr(Zt1AFt2F
′
t2
A)2]

(259)

We then again apply (142) to t = t2. It is then straightforward to show that the leading

contribution will be

E[tr(Zt1AZt2A)
2] = E[

(∑
Xi1,k1,t1λi1(Σ)Xi1,k2,t1λk2(Ã)Xi2,k2,t2λi2(Σ)Xi2,k1,t2λk1(Ã)

)2

]

= E[
∑

Xi1,k1,t1λi1(Σ)Xi1,k2,t1λk2(Ã)Xi2,k2,t2λi2(Σ)Xi2,k1,t2λk1(Ã)

×Xĩ1,k̃1,t1
λĩ1(Σ)Xĩ1,k̃2,t1

λk̃2(Ã)Xĩ2,k̃2,t2
λi2(Σ)Xĩ2,k̃1,t2

λk̃1(Ã)]

(260)

Non-zero terms must have that (i1, k1), (i1, k2), (̃i1, k̃1), (̃i2, k̃2) is coming in at least two

identical pairs. For example, k1 = k2, k̃1 = k̃2 will give tr(Σ)4(tr(Ã2))2. All other terms

will be even smaller because more indices should be equal. For example, if k1 = k̃1 we ought

to have i1 = ĩ1. The proof of Lemma 30 is complete. □

Thus, (254) converges to zero.

The proof of Lemma 28 is complete. □
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Summarizing, we get from (245) and (242), (253), that

Term2 = (1 + ξ(z; c))−2(Γ1,1(z)
2 + Γ4(z)) − 2

cΓ3(z)Γ1,1(z)

(1 + ξ(z; c))3
(261)

and (218) implies

E[(RF
t+1(z))

2] ∼︸︷︷︸
(218)

Term1 + Term2

∼︸︷︷︸ (234) (1 + ξ(z; c))−2cΓ3(z) + Term2

∼︸︷︷︸
(261)

(1 + ξ(z; c))−2cΓ3(z) + (1 + ξ(z; c))−2(Γ1,1(z)
2 + Γ4(z)) − 2

cΓ3(z)Γ1,1(z)

(1 + ξ(z; c))3

(262)

and the final expression follows from Lemma 25:

Γ1,1(z)
2 + Γ4(z) = Γ1,1(z)

2 +
Γ1,1(z) + zΓ′

1,1(z)− (Γ1,1(z))
2(1 + ξ(z; c))−2

(1 + ξ(z; c))−2
(263)

K Proof of Theorem ??

The same argument as in (218) implies that

E[RF
t+1(z1)R

F
t+1(z2)]

∼ Term1 + Term2
(264)

with

Term1 =
1

N2T
E[F ′

t1
(z1I +BT )

−1
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(z2I +BT )

−1Ft1 ]

(265)
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and

Term2 =
1

N2

T (T − 1)

T 2
E[F ′

t1
(z1I +BT )

−1
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(z2I +BT )

−1Ft2 ]

(266)

for any t1 ̸= t2.

The same argument as above implies that

Term1 ∼ (1 + ξ(z1))
−1(1 + ξ(z2))

−1cΓ3(z1, z2) (267)

where

Lemma 31 We have

1

PN2
trE[Ft1F

′
t1
(z1I +BT,t1,t2)

−1Ft2F
′
t2
(z2I +BT,t1,t2)

−1]

∼ 1

P
trE[Ψ(z1I +BT )

−1Ψ(z2I +BT )
−1]

→ Γ3(z1, z2) =
(
1−

(z22m(−z2; c)− z21m(−z1; c)
z2 − z1

+ c−1 ξ(z1)

1 + ξ(z1)

ξ(z1)

1 + ξ(z1)

))
((1 + ξ(z1))(1 + ξ(z2)))

2 .

(268)

Proof. We have by the Sherman-Morrison formula that

1

P

1

N2T
trE[Ft1F

′
t1
(z1I +BT )

−1Ft1F
′
t1
(z2I +BT )

−1]

∼ 1

c

1

N2T 2
E[F ′

t1
(z1I +BT )

−1Ft1F
′
t1
(z2I +BT )

−1Ft1 ]

= c−1E

[ 1
NT
F ′
t1
(z1I +BT,t1)

−1Ft1

1 + 1
NT
F ′
t1(z1I +BT,t1)

−1Ft1

1
NT
F ′
t1
(z2I +BT,t1)

−1Ft1

1 + 1
NT
F ′
t1(z2I +BT,t1)

−1Ft1

]
∼ c−1 ξ(z1)

1 + ξ(z1)

ξ(z2)

1 + ξ(z2)

(269)
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by Lemma 19. Now,

1 =
1

P
trE[(z1I +BT )(z1I +BT )

−1(z2I +BT )(z2I +BT )
−1]

= f(z1, z2)

+
1

P
trE[BT (z1I +BT )

−1BT (z2I +BT )
−1]

∼ f(z1, z2) +
1

P

1

N2T 2

∑
t1,t2

trE[Ft1F
′
t1
(z1I +BT )

−1Ft2F
′
t2
(z2I +BT )

−1]

= f(z1, z2) +
1

P

1

N2T
trE[Ft1F

′
t1
(z1I +BT )

−1Ft1F
′
t1
(z2I +BT )

−1]

+
1

P

1

N2

T (T − 1)

T 2
trE[Ft1F

′
t1
(z1I +BT )

−1Ft2F
′
t2
(z2I +BT )

−1]

∼ f(z1, z2) + c−1 ξ(z1)

1 + ξ(z1)

ξ(z1)

1 + ξ(z1)

+
1

P

1

N2
trE[Ft1F

′
t1
(z1I +BT )

−1Ft2F
′
t2
(z2I +BT )

−1]

∼ f(z1, z2) + c−1 ξ(z1)

1 + ξ(z1)

ξ(z1)

1 + ξ(z1)

+
1

P

1

N2
trE[Ft1F

′
t1
(z1I +BT,t1)

−1Ft2F
′
t2
(z2I +BT,t2)

−1]/((1 + ξ(z1))(1 + ξ(z2)))

∼ f(z1, z2) + c−1 ξ(z1)

1 + ξ(z1)

ξ(z1)

1 + ξ(z1)

+
1

P

1

N2
E[F ′

t1
(z2I +BT,t1,t2)

−1Ft2F
′
t2
(z1I +BT,t1,t2)

−1Ft1 ]/((1 + ξ(z1))(1 + ξ(z2)))
2

= f(z1, z2) + c−1 ξ(z1)

1 + ξ(z1)

ξ(z1)

1 + ξ(z1)

+
1

P

1

N2
trE[Ft1F

′
t1
(z1I +BT,t1,t2)

−1Ft2F
′
t2
(z2I +BT,t1,t2)

−1]/((1 + ξ(z1))(1 + ξ(z2)))
2

(270)

where we have defined

BT,t1,t2 =
1

NT

∑
τ ̸∈{t1,t2}

FτF
′
τ . (271)
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and

f(z1, z2) =
1

P
z1z2 trE[(z1I+BT )

−1(z2I+BT )
−1] + (z1+z2)

1

P
trE[(z1I+BT )

−1(z2I+BT )
−1BT ] .

(272)

We also used that

F ′
t1
(zI +BT )

−1 ∼ F ′
t1
(zI +BT,t1)

−1/(1 + ξ(z; c))

by Lemma 19 and the Sherman-Morrison formula.

Now,

1

P

1

N2
trE[Ft1F

′
t1
(z1I +BT,t1,t2)

−1Ft2F
′
t2
(z2I +BT,t1,t2)

−1]

=
1

P

1

N2
trE[

(
((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ

+Ψ
(
tr(Σ) + tr(N−1ΣFΨ) tr(Σ2)

))
(z1I +BT,t1,t2)

−1

(
((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ

+Ψ
(
tr(Σ) + tr(N−1ΣFΨ) tr(Σ2)

))
(z2I +BT,t1,t2)

−1]

(273)

which coincides with the expression in (221). By the derivations in formulas (222) and (223),

we get

1

PN2
trE[Ft1F

′
t1
(z1I +BT,t1,t2)

−1Ft2F
′
t2
(z2I +BT,t1,t2)

−1]

∼ 1

P
trE[Ψ(z1I +BT )

−1Ψ(z2I +BT )
−1] ,

(274)
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and hence

1 ∼ f(z1, z2) + c−1 ξ(z1)

1 + ξ(z1)

ξ(z1)

1 + ξ(z1)

+
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1]/((1 + ξ(z1))(1 + ξ(z2)))

2 ,

(275)

Finally,

f(z1, z2) =
1

P
z1z2 trE[(z1I +BT )

−1(z2I +BT )
−1]

+ (z1 + z2)
1

P
trE[(z1I +BT )

−1(z2I +BT )
−1(BT + z2I − z2I)]

= P−1(z1z2 − (z1 + z2)z2)(z2 − z1)
−1(m(−z1; c)−m(−z2; c)) + (z1 + z2)m(−z1; c)

=
z22m(−z2; c)− z21m(−z1; c)

z2 − z1
.

(276)

□

Thus,

Term1 ∼ Γ3(z1, z2)

(1 + ξ(z1))(1 + ξ(z2))
. (277)

L Term2 in (264)

We now proceed with Term2 in (264):

((1 + ξ(z1))(1 + ξ(z2))) × Term2 from (264)

∼ 1

N2
E[F ′

t1

(
(z1I +BT,t1,t2)

−1 −
1

NT
(z1I +BT,t1,t2)

−1Ft2F
′
t2
(z1I +BT,t1,t2)

−1

1 + 1
NT
F ′
t2(z1I +BT,t1,t2)

−1Ft2

)
(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)(
(z2I +BT,t1,t2)

−1

−
1

NT
(z2I +BT,t1,t2)

−1Ft1F
′
t1
(z2I +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(z2I +BT,t1,t2)

−1Ft1

)
Ft2 ]

= Term1 + Term2 + Term3

(278)
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where

Term1 =
1

N2
E[F ′

t1
(z1I +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
(z2I +BT,t1,t2)

−1Ft2 ]

Term2 = τ(z1, z2) + τ(z2, z1)

τ(z1, z2) = − 1

N2
E[F ′

t1
(z1I +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(z2I +BT,t1,t2)
−1Ft1F

′
t1
(z2I +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(z2I +BT,t1,t2)

−1Ft1

Ft2 ]

Term3 =
1

N2
E[F ′

t1

1
NT

(z1I +BT,t1,t2)
−1Ft2F

′
t2
(z1I +BT,t1,t2)

−1

1 + 1
NT
F ′
t2(z1I +BT,t1,t2)

−1Ft2(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

) 1
NT

(z2I +BT,t1,t2)
−1Ft1F

′
t1
(z2I +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(z2I +BT,t1,t2)

−1Ft1

Ft2 ]

(279)

The same argument as above implies that Term3 is asymptotically negligible.

We now analyze each term separately.

L.1 Term1 in (279)

First, E[Ft] = N−1/2 tr(ΣΣε)Ψλ and therefore

Term1

=
1

N4
(tr(Σ))2λ′ΨE[(z1I +BT,t1,t2)

−1(tr Σ)2ΨΣ∗
FΨ(z2I +BT,t1,t2)

−1]Ψλ

+
1

N4
(tr(Σ))2λ′ΨE[(z1I +BT,t1,t2)

−1(tr Σ)2Ψλλ′Ψ(z2I +BT,t1,t2)
−1]Ψλ

+
1

N3
(tr(Σ))2λ′ΨE[(z1I +BT,t1,t2)

−1(tr ΣΣε)Ψ(z2I +BT,t1,t2)
−1]Ψλ

∼ Γ1,1(z1)Γ1,1(z2) + Γ4,T (z1, z2) ,

(280)

where Γ4 is defined in the following lemma. Here, we have used Lemma 24.
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Lemma 32 We have

λ′ΨE[(z1I +BT,t1,t2)
−1Ψ(z2I +BT,t1,t2)

−1]Ψλ = Γ4,T (z1, z2)

→ Γ4(z1, z2) =

z2Γ1,1,T (z2)−z1Γ1,1,T (z1)

z2−z1
− Γ1,1(z1)Γ1,1(z2)

(1+ξ(z1))(1+ξ(z2))

(1 + ξ(z1))−1(1 + ξ(z2))−1

(281)

Proof. We have by the symmetry across t and the Sherman-Morrison formula and Lemma

19 that

Γ1,1(z1) ∼ λ′E[Ψ(z1I +BT )
−1Ψ]λ = λ′E[Ψ(z1I +BT )

−1(z2I +BT )(z2I +BT )
−1Ψ]λ

= z2 λ
′E[Ψ(z1I +BT )

−1(z2I +BT )
−1Ψ]λ + λ′E[Ψ(z1I +BT )

−1BT (z2I +BT )
−1Ψ]λ

= −z2
Γ1,1,T (z2)− Γ1,1,T (z1)

z2 − z1
+ λ′E[Ψ(z1I +BT )

−1 1

NT

∑
t

FtF
′
t(z2I +BT )

−1Ψ]λ

= −z2
Γ1,1,T (z2)− Γ1,1,T (z1)

z2 − z1
+

1

N
λ′E[Ψ(z1I +BT )

−1FtF
′
t(z2I +BT )

−1Ψ]λ

∼ −z2
Γ1,1,T (z2)− Γ1,1,T (z1)

z2 − z1
+

1

N
λ′E[Ψ(z1I +BT,t)

−1FtF
′
t(z2I +BT,t)

−1Ψ]λ(1 + ξ(z1))
−1(1 + ξ(z2))

−1

= −z2
Γ1,1,T (z2)− Γ1,1,T (z1)

z2 − z1

+
1

N
λ′E[Ψ(z1I +BT,t)

−1

(
((tr Σ)2 + tr(Σ2))ΨN−1ΣFΨ

+ Ψ
(
tr(Σ) + tr(N−1ΣFΨ) tr(Σ2)

))
(z2I +BT,t)

−1Ψ]λ(1 + ξ(z1))
−1(1 + ξ(z2))

−1

∼ −z2
Γ1,1,T (z2)− Γ1,1,T (z1)

z2 − z1
+ Γ1,1(z1)Γ1,1(z2)(1 + ξ(z1))

−1(1 + ξ(z2))
−1

+ Γ4,T (z1, z2)(1 + ξ(z1))
−1(1 + ξ(z2))

−1

(282)

The claim follows now because Γ′
1,1,T (z) → Γ′

1,1(z) by standard properties of analytic func-

tions. The proof of Lemma 32 is complete. □
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L.2 Term2 in (279)

The next term in (279) is

τ(z1, z2) = − 1

N2
E[F ′

t1
(z1I +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(z2I +BT,t1,t2)
−1Ft1F

′
t1
(z2I +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(z2I +BT,t1,t2)

−1Ft1

Ft2 ]/((1 + ξ(z1))(1 + ξ(z2)))

= − 1

N2
E[F ′

t1
(z1I +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(z2I +BT,t1,t2)
−1Ft1F

′
t1
(z2I +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(z2I +BT,t1,t2)

−1Ft1

ΨλN−1/2] tr(Σ)//((1 + ξ(z1))(1 + ξ(z2)))

∼ − 1

N
E[F ′

t1
(z1I +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(z2I +BT,t1,t2)
−1Ft1F

′
t1
(z2I +BT,t1,t2)

−1

1 + 1
NT
F ′
t1(z2I +BT,t1,t2)

−1Ft1

ΨλN−1/2]//((1 + ξ(z1))(1 + ξ(z2)))

= −((1 + ξ(z1))(1 + ξ(z2)))
−1E[XTYT ],

(283)

where we have used that

E[Ft2 ] = ΨλN−1/2 , (284)
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and where

YT = N−1/2F ′
t1
(z1I +BT,t1,t2)

−1λ

XT = N−1F ′
t1
(z2I +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(z2I +BT,t1,t2)
−1Ft1

1 + 1
NT
F ′
t1(z2I +BT,t1,t2)

−1Ft1

(285)

Recall that

YT =
1

N1/2
F ′
t1
(z1I +BT,t1,t2)

−1Ψλ

and

XT = N−1F ′
t1
(z2I +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

)
×

1
NT

(z2I +BT,t1,t2)
−1Ft1

1 + 1
NT
F ′
t1(z2I +BT,t1,t2)

−1Ft1

(286)

Now, we know from the proof of Lemma 11 that

1

NT
F ′
tAFt −

1

NT
tr(AE[FtF

′
t ]) → 0

in L2 and

N−1F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨN−1ΣFΨ+Ψtr(ΣΣε)

) 1

NT
(zI +BT,t1,t2)

−1Ft1

∼ cΓ3(z)

(287)

by (252).
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Furthermore, XT is uniformly bounded by the Cauchy-Schwarz inequality. Thus,

XT → cΓ3(z2)

1 + ξ(z2)

and

E[YT ] → Γ1,1(z1)

by Lemma 27, and Lemma 26 implies

Term2 ∼ −cΓ3(z2)Γ1,1(z1)(1 + ξ(z2))
−1 + Γ3(z1)Γ1,1(z2)(1 + ξ(z1))

−1

(1 + ξ(z1))(1 + ξ(z2))
. (288)

Proof of Lemma ??. Then, Theorem ?? implies

zm(−z) =
∫

zdH(x)

x(1− c+ czm) + z
,

implying that zm(z) → 1 when z → ∞, whereas

1−zm(z) = 1−
∫

zdH(x)

x(1− c+ czm(−z)) + z
= (1−c+czm(z))

∫
xdH(x)

x(1− c+ czm(−z)) + z
,

and therefore

1− zm(z) ∼ z−1aψ∗,1 ,
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and

1− zm(−z)− ψ∗,1az
−1

= (1− c+ czm(z))

∫
xdH(x)

x(1− c+ czm(−z)) + z
− ψ∗,1az

−1

= (1− cz−1aψ∗,1 +O(z−2))z−1

∫
xdH(x)

xz−1(1− cz−1aψ∗,1 +O(z−2)) + 1
− ψ∗,1az

−1

∼ (1− cz−1aψ∗,1 +O(z−2))z−1

∫
xdH(x)

xz−1 + 1
− ψ∗,1az

−1

∼ (1− cz−1aψ∗,1 +O(z−2))z−1

∫
(x− x2z−1)dH(x)− ψ∗,1az

−1

∼ z−1ψ∗,1a− ψ∗,2a
2z−2 − cz−2a2ψ2

∗,1 − ψ∗,1az
−1 + O(z−3)

= −z−2(ψ∗,2 + cψ2
∗,1)a

2 + O(z−3)

(289)

Now, we can expand to the higher order. We have

1− c+ czm(−z) = 1− c(1− zm(−z)) = 1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a

2 + O(z−2))
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and hence

1− zm(−z)− ψ∗,1az
−1 + z−2(ψ∗,2 + cψ2

∗,1)a
2

= (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a

2 + O(z−2)))

×
∫

xdH(x)

x(1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a

2 + O(z−2))) + z
− ψ∗,1az

−1 + z−2(ψ∗,2 + cψ2
∗,1)a

2

= (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a

2 + O(z−2)))

× z−1

∫
xdH(x)

xz−1(1− cz−1ψ∗,1a) + 1 +O(z−3)
− ψ∗,1az

−1 + z−2(ψ∗,2 + cψ2
∗,1)a

2

∼ (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a

2 + O(z−2)))z−1

∫
x(1− xz−1(1− cz−1ψ∗,1a) + x2z−2)

− ψ∗,1az
−1 + z−2(ψ∗,2 + cψ2

∗,1)a
2

∼ (1− cz−1(ψ∗,1a− z−1(ψ∗,2 + cψ2
∗,1)a

2 + O(z−2)))z−1

(
ψ∗,1a− z−1ψ∗,2a

2 + z−2a3(ψ∗,3 + cψ∗,2ψ∗,1)

)
− ψ∗,1az

−1 + z−2(ψ∗,2 + cψ2
∗,1)a

2

= ψ∗,1az
−1 − z−2ψ∗,2a

2 + z−3a3(ψ∗,3 + cψ∗,2ψ∗,1)

− cz−2ψ∗,1a(ψ∗,1a− z−1ψ∗,2a
2) + cz−3(ψ∗,2 + cψ2

∗,1)a
2ψ∗,1a + O(z−4)− ψ∗,1az

−1 + z−2(ψ∗,2 + cψ2
∗,1)a

2

= z−3a3(ψ∗,3 + cψ∗,2ψ∗,1)

− cz−2ψ∗,1a(−z−1ψ∗,2a
2) + cz−3(ψ∗,2 + cψ2

∗,1)a
2ψ∗,1a + O(z−4)

= z−3a3(ψ∗,3 + 3cψ∗,2ψ∗,1 + c2ψ3
∗,1) + O(z−4) .

(290)

The proof of Lemma ?? is complete. □
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M Proofs for the Mis-Specified Model

Proof of Theorem ??. Lemma 33 Define

m(−z; cq) = lim
P1→∞, P1/P→q

P−1
1 tr((zI +B

(1)
T )−1) (291)

and let ξ(z; cq) be uniquely defined through

(cq)−1ξ(z; cq)

1 + ξ(z; cq)
= 1 − m(−z; cq)z . (292)

Then,

1

T
tr((zI +B

(1)
T )−1σ∗Ψ1,1) → ξ(z; cq) (293)

almost surely and

1

NT
(F

(1)
T+1)

′(zI +B
(1)
T )−1F

(1)
T+1 → ξ(z; cq) (294)

in probability.

Lemma 34 Let

Γ1,1(z; q) = lim(λ(1))′Ψ1,1(zI +B
(1)
T )−1Ψ1,1(λ

(1)) . (295)

Then, this limit exists almost surely and is non-random. Let

δ(z; q) = −σ∗z−1(1 + ξ(z; cq))−1 . (296)
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Then,

Γ1,1(z; q) = q
z−1P−1

1 tr(Ψ2
1,1(I −Ψ1,1δ(z; q))

−1Σ
(1)
λ )

1− δ(z; q)qP−1
1 tr(Ψ2

1,1(I −Ψ1,1δ(z; q))−1Σ
(1)
λ )

. (297)

□

N Proof of Theorem ??

We have

λ̂ = (zI +BT )
−1 1

NT

∑
t

Ft (298)

Recall that we are working with βt+1 = N−1/2F̃t+1 and Ft+1 = S ′
tRt+1 where St = Σ1/2XtΨ

1/2.

Thus,

E[Ft] = E[S ′
tRt+1] = E[S ′

tStN
−1/2λ] = N−1/2 tr(Σ)Ψλ (299)

The out-of-sample pricing error is

E[Ft+1(1− qλ̂′Ft+1)|λ̂] = E[Ft+1|λ̂] − qE[S ′
tRt+1λ̂

′S ′
tRt+1|λ̂]

= E[Ft+1|λ̂] − qE[S ′
t(Stβt+1 + εt+1)λ̂

′S ′
t(Stβt+1 + εt+1)|λ̂]

= E[Ft+1]− qE[S ′
t(Stβt+1)λ̂

′S ′
tStβt+1|λ̂] − qE[S ′

t(εt+1)λ̂
′S ′

tεt+1|λ̂]

= E[Ft+1] − qE[S ′
tStβt+1β

′
t+1S

′
tSt]λ̂ − qE[S ′

tεt+1λ̂
′S ′

tεt+1|λ̂]

= E[Ft+1] − qE[S ′
tStN

−1ΣFS
′
tSt]λ̂ − qE[S ′

tεt+1λ̂
′S ′

tεt+1|λ̂]

=︸︷︷︸
Lemma 10

E[Ft+1] − qE[S ′
tStN

−1ΣFS
′
tSt]λ̂ − qE[S ′

tΣεSt]λ̂

= E[Ft+1] − qE[S ′
tStN

−1ΣFS
′
tSt]λ̂ − q tr(ΣΣε)Ψλ̂

(300)
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By Corollary 9, we have

N−1E[S ′
tStΣFS

′
tSt] = N−1((tr Σ)2 + tr(Σ2))ΨΣFΨ+N−1 tr(Σ2) tr(ΨΣF )Ψ

+ N−1 tr(Σ2)Ψ1/2 diag(κ− 2) diag(Ψ1/2ΣFΨ
1/2)Ψ1/2

≈ NΨΣFΨ

(301)

because other terms are negligible since ΣF has a small trace. Thus,

E[Ft+1(1− qλ̂′βt+1)|λ̂] = N−1/2 tr(Σ)Ψλ− qE[S ′
tStN

−1ΣFS
′
tSt]λ̂ − q tr(ΣΣε)Ψλ̂

= N1/2Ψλ− q(NΨΣFΨ+ tr(ΣΣε)Ψ)λ̂
(302)

In the zero-complexity case and with zero shrinkage, we have

λ̂ = B−1
T N−1E[F ] ≈ (σ∗Ψ)−1N−1E[F ]

= (tr(ΣΣε))
−1Ψ−1E[F ] = (tr(ΣΣε))

−1Ψ−1N−1/2 tr(Σ) = (tr(ΣΣε))
−1N1/2λ

(303)

and hence, setting q = 1, we get

N1/2Ψλ− (NΨΣFΨ+ tr(ΣΣε)Ψ)(tr(ΣΣε))
−1N1/2λ (304)

and hence we should rescale by N−1/2 and hence the expected squared pricing error is

PricingErrors

= N−1E
[(
N1/2Ψλ− q(NΨΣFΨ+ tr(ΣΣε)Ψ)λ̂

)′(
N1/2Ψλ− q(NΨΣFΨ+ tr(ΣΣε)Ψ)λ̂

)]
= λ′Ψ2λ − 2qN−1/2E[λ̂′((NΨΣFΨ+ tr(ΣΣε)Ψ))Ψλ]

+ N−1q2E[λ̂′((NΨΣFΨ+ tr(ΣΣε)Ψ))2λ̂] .

(305)
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Now,

E[λ̂] =︸︷︷︸
symmetry over t

E[(zI +BT )
−1N−1Ft]

≈ E[(zI +BT,t)
−1N−1Ft]

1 + ξ(z; c)

(306)

Since we use the normalization tr(Σ) = N, we get

E[λ̂] ≈ N−1/2E[(zI +BT,t)
−1Ψ]λ

1 + ξ(z; c)
(307)

Thus,

PricingErrors

= ψ2,λ − 2qN−1/2λ′E[N−1/2 (zI +BT,t)
−1Ψ

1 + ξ(z; c)
((NΨΣFΨ+ tr(ΣΣε)Ψ))Ψλ]

+ N−1q2E[λ̂′((NΨΣFΨ+ tr(ΣΣε)Ψ))2λ̂]

= ψ2,λ − 2q(1 + ξ(z; c))−1λ′E[(zI +BT,t)
−1Ψ(ΨΣFΨ+ σ∗Ψ)Ψ]λ

+ N−1q2E[λ̂′((NΨΣFΨ+ tr(ΣΣε)Ψ))2λ̂]

≈︸︷︷︸
Lemma 12

ψ2,λ − 2q(1 + ξ(z; c))−1λ′E[(zI +BT,t)
−1Ψ(Ψλλ′Ψ+ σ∗Ψ)Ψ]λ

+ q2NE[λ̂′((ΨΣFΨ+ σ∗Ψ))2λ̂]

≈ ψ2,λ − 2q(1 + ξ(z; c))−1(Γ0,2(z)ψ2,λ + σ∗Γ0,3(z))

+ q2NE[λ̂′((ΨΣFΨ+ σ∗Ψ))2λ̂]

(308)
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It remains to compute

NE[λ̂′((ΨΣFΨ+ σ∗Ψ))2λ̂]

= N−1T−2
∑
t1,t2

E[F ′
t1
(zI +BT )

−1((ΨΣFΨ+ σ∗Ψ))2(zI +BT )
−1Ft2 ]

=︸︷︷︸
symmetry

N−1T−1E[F ′
t1
(zI +BT )

−1((ΨΣFΨ+ σ∗Ψ))2(zI +BT )
−1Ft1 ]

+ N−1T (T − 1)

T 2
E[F ′

t1
(zI +BT )

−1((ΨΣFΨ+ σ∗Ψ))2(zI +BT )
−1Ft2 ]

= Term1 + Term2

(309)

for any t1 ̸= t2. Here,

Term1 ≈ N−1T−1(1 + ξ(z; c))−2E[F ′
t1
(zI +BT,t1)

−1((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1)
−1Ft1 ]

= N−1T−1(1 + ξ(z; c))−2 trE[(zI +BT,t1)
−1((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1)

−1Ft1F
′
t1
]

≈ σ∗T
−1(1 + ξ(z; c))−2 trE[(zI +BT,t1)

−1((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1)
−1Ψ]

≈ σ∗T
−1(1 + ξ(z; c))−2 trE[(zI +BT,t1)

−1(σ∗Ψ)2(zI +BT,t1)
−1Ψ]

(310)

N.1 Term1 in (309)

By (??), we have

1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1] ≈ σ−2

∗ Γ3(z) (311)
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whereas

ψ∗,1 ≈ P−1 tr(Ψ) =
1

P
trE[Ψ(zI +BT )

−1(zI +BT )]

≈︸︷︷︸
(??)

z(cσ∗)
−1ξ(z; c) +

1

P
trE[Ψ(zI +BT )

−1 1

NT

∑
t

FtF
′
t ]

=︸︷︷︸
symmetry

z(cσ∗)
−1ξ(z; c) +

1

P
trE[Ψ(zI +BT )

−1 1

N
FtF

′
t ]

=︸︷︷︸
(99) and Lemma 8

z(cσ∗)
−1ξ(z; c) + (1 + ξ(z; c))−1 1

P
trE[Ψ(zI +BT,t)

−1 1

N
FtF

′
t ]

≈ z(cσ∗)
−1ξ(z; c) + (1 + ξ(z; c))−1 1

P
trE[Ψ(zI +BT,t)

−1σ∗Ψ]

(312)

implying that

(1 + ξ(z; c))−1 1

P
trE[Ψ(zI +BT,t)

−1σ∗Ψ] ≈ ψ∗,1 − z(cσ∗)
−1ξ(z; c) (313)

Furthermore,

σ−1
∗ (1 + ξ(z; c))(ψ∗,1 − z(cσ∗)

−1ξ(z; c)) ≈︸︷︷︸
(313)

1

P
trE[Ψ(zI +BT )

−1Ψ]

≈ 1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1(zI +BT )]

≈︸︷︷︸
(311)

zσ−2
∗ Γ3(z)

+
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1BT ]

= zσ−2
∗ Γ3(z)

+
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1 1

NT

∑
t

FtF
′
t ]

=︸︷︷︸
symmetry

zσ−2
∗ Γ3(z)

+
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1 1

N
FtF

′
t ]

(314)
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=︸︷︷︸
(99) and Lemma 8

zσ−2
∗ Γ3(z)

+ (1 + ξ(z; c))−1 1

P
trE[Ψ

(
(zI +BT,t)

−1

− (1 + ξ(z; c))−1(zI +BT,t)
−1(NT )−1FtF

′
t(zI +BT,t)

−1
)
Ψ(zI +BT,t)

−1 1

N
FtF

′
t ]

= zσ−2
∗ Γ3(z)

+ (1 + ξ(z; c))−1 1

P
trE[Ψ(zI +BT,t)

−1Ψ(zI +BT,t)
−1 1

N
FtF

′
t ]

− (1 + ξ(z; c))−2 1

P
trE[Ψ(zI +BT,t)

−1(NT )−1FtF
′
t(zI +BT,t)

−1Ψ(zI +BT,t)
−1 1

N
FtF

′
t ]

≈ zσ−2
∗ Γ3(z)

+ (1 + ξ(z; c))−1 1

P
trE[Ψ(zI +BT,t)

−1Ψ(zI +BT,t)
−1σ∗Ψ]

− (1 + ξ(z; c))−2 1

P
trE[F ′

tΨ(zI +BT,t)
−1(NT )−1FtF

′
t(zI +BT,t)

−1Ψ(zI +BT,t)
−1 1

N
Ft]

≈︸︷︷︸
Lemma 11

zσ−2
∗ Γ3(z)

+ (1 + ξ(z; c))−1 1

P
trE[Ψ(zI +BT,t)

−1Ψ(zI +BT,t)
−1σ∗Ψ]

− (1 + ξ(z; c))−2 1

P
trE[Ψ(zI +BT,t)

−1Ψσ∗](T )−1 trE[(zI +BT,t)
−1Ψ(zI +BT,t)

−1σ∗Ψ]

=︸︷︷︸
(313)

zσ−2
∗ Γ3(z)

+ (1 + ξ(z; c))−1 1

P
trE[Ψ(zI +BT,t)

−1Ψ(zI +BT,t)
−1σ∗Ψ]

− (1 + ξ(z; c))−2(1 + ξ(z; c))(ψ∗,1 − z(cσ∗)
−1ξ(z; c))(T )−1 trE[(zI +BT,t)

−1Ψ(zI +BT,t)
−1σ∗Ψ]

=︸︷︷︸
(311)

zσ−2
∗ Γ3(z)

+ (1 + ξ(z; c))−1 1

P
trE[Ψ(zI +BT,t)

−1Ψ(zI +BT,t)
−1σ∗Ψ]

− (1 + ξ(z; c))−2(1 + ξ(z; c))(ψ∗,1 − z(cσ∗)
−1ξ(z; c))cσ−1

∗ Γ3(z) .

(315)
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As a result, we get

Lemma 35

(1 + ξ(z; c))−1 1

P
trE[Ψ(zI +BT,t)

−1Ψ(zI +BT,t)
−1σ∗Ψ]

≈ σ−1
∗ (1 + ξ(z; c))(ψ∗,1 − z(cσ∗)

−1ξ(z; c))

+ (1 + ξ(z; c))−1(ψ∗,1 − z(cσ∗)
−1ξ(z; c))cσ−1

∗ Γ3(z)− zσ−2
∗ Γ3(z)

(316)

We conclude from (310) that

(1 + ξ(z; c))Term1 ≈ σ∗T
−1 trE[(zI +BT,t1)

−1(σ∗Ψ)2(zI +BT,t1)
−1Ψ]

≈ σ3
∗cP

−1 trE[Ψ(zI +BT,t1)
−1Ψ(zI +BT,t1)

−1Ψ]

≈ σ2
∗c(1 + ξ(z; c))

(
σ−1
∗ (1 + ξ(z; c))(ψ∗,1 − z(cσ∗)

−1ξ(z; c))

+ (1 + ξ(z; c))−1(ψ∗,1 − z(cσ∗)
−1ξ(z; c))cσ−1

∗ Γ3(z)− zσ−2
∗ Γ3(z)

)
(317)

so that

Term1

≈

(
σ∗c(1 + ξ(z; c))(ψ∗,1 − z(cσ∗)

−1ξ(z; c))

+ (1 + ξ(z; c))−1(ψ∗,1 − z(cσ∗)
−1ξ(z; c))σ∗c

2Γ3(z)− zσ−2
∗ Γ3(z)

) (318)
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N.2 Term2 in (309)

Similarly,

Term2 ≈ (1 + ξ(z; c))−2N−1E[F ′
t1
(zI +BT,t1)

−1((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t2)
−1Ft2 ]

≈︸︷︷︸
(99) and Lemma 8

N−1(1 + ξ(z; c))−2E[F ′
t1

(
(zI +BT,t1,t2)

−1

− (1 + ξ(z; c))−1(zI +BT,t1,t2)
−1(NT )−1Ft2F

′
t2
(zI +BT,t1,t2)

−1
)
((ΨΣFΨ+ σ∗Ψ))2

(
(zI +BT,t1,t2)

−1

− (1 + ξ(z; c))−1(zI +BT,t1,t2)
−1(NT )−1Ft1F

′
t1
(zI +BT,t1,t2)

−1
)
Ft2 ]

= N−1(1 + ξ(z; c))−2E[F ′
t1
(zI +BT,t1,t2)

−1((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1,t2)
−1Ft2 ]

− 2N−1(1 + ξ(z; c))−3E[F ′
t1
(zI +BT,t1,t2)

−1(NT )−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

× ((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1,t2)
−1Ft2 ]

+ N−1(1 + ξ(z; c))−2E[F ′
t1
(1 + ξ(z; c))−1(zI +BT,t1,t2)

−1(NT )−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

× (ΨΣFΨ+ σ∗Ψ))2(1 + ξ(z; c))−1(zI +BT,t1,t2)
−1(NT )−1Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2 ]

= Term21 + Term22 + Term23 .

(319)

Here,

Term21 = N−1(1 + ξ(z; c))−2E[F ′
t1
(zI +BT,t1,t2)

−1((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1,t2)
−1Ft2 ]

≈ (1 + ξ(z; c))−2E[λ′Ψ(zI +BT,t1,t2)
−1((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1,t2)

−1Ψλ]

≈ (1 + ξ(z; c))−2E[λ′Ψ(zI +BT,t1,t2)
−1(Ψλλ′ΨΨλλ′Ψ+ 2Ψλλ′Ψσ∗Ψ+ σ2

∗Ψ
2)(zI +BT,t1,t2)

−1Ψλ]

≈ (1 + ξ(z; c))−2
(
Γ2
1,1(z)ψ2,λ + 2Γ1,1(z)σ∗Γ1,2(z) + σ2

∗λ
′E[Ψ(zI +BT,t1,t2)

−1Ψ2(zI +BT,t1,t2)
−1Ψλ]

)
(320)

143



By Lemma 25, we have

σ∗λ
′ΨE[(zI +BT,t1,t2)

−1Ψ(zI +BT,t1,t2)
−1]Ψλ = Γ4,T (z)

→ Γ4(z) =
Γ1,1(z) + zΓ′

1,1(z)− (Γ1,1(z))
2(1 + ξ(z; c))−2

(1 + ξ(z; c))−2

(321)
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Therefore, we have

Γ1,2(z) ∼ λ′E[Ψ(zI +BT )
−1Ψ2]λ = λ′E[Ψ(zI +BT )

−1Ψ(zI +BT )(zI +BT )
−1Ψ]λ

= z λ′E[Ψ(zI +BT )
−1Ψ(zI +BT )

−1Ψ]λ + λ′E[Ψ(zI +BT )
−1ΨBT (zI +BT )

−1Ψ]λ

= z σ−1
∗ Γ4,T (z) + λ′E[Ψ(zI +BT )

−1Ψ
1

NT

∑
t

FtF
′
t(zI +BT )

−1Ψ]λ

= z σ−1
∗ Γ4,T (z) +

1

N
λ′E[Ψ(zI +BT )

−1ΨFtF
′
t(zI +BT )

−1Ψ]λ

∼ z σ−1
∗ Γ4,T (z) +

1

N
λ′E[Ψ

(
(zI +BT,t)

−1 − (NT )−1(zI +BT,t)
−1FtF

′
t(zI +BT,t)

−1(1 + ξ(z; c))−1
)

×ΨFtF
′
t(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−1

= z σ−1
∗ Γ4,T (z)

+
1

N
λ′E[Ψ(zI +BT,t)

−1ΨFtF
′
t(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−1

− 1

N
λ′E[Ψ(NT )−1(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1(1 + ξ(z; c))−1ΨFtF
′
t(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−1

≈︸︷︷︸
Lemma 12

z σ−1
∗ Γ4,T (z)

+ λ′E[Ψ(zI +BT,t)
−1Ψ(Ψλλ′Ψ+ σ∗Ψ)(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−1

− 1

N
λ′E[Ψ(zI +BT,t)

−1Ftκ2(z)F
′
t(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−2

≈︸︷︷︸
Lemma 12

z σ−1
∗ Γ4,T (z)

+ (Γ1,2(z)Γ1,1(z) + σ∗λ
′E[Ψ(zI +BT,t)

−1Ψ2(zI +BT,t)
−1Ψ]λ)(1 + ξ(z; c))−1

− λ′E[Ψ(zI +BT,t)
−1κ2(z)(Ψλλ

′Ψ+ σ∗Ψ)(zI +BT,t)
−1Ψ]λ(1 + ξ(z; c))−2

≈ z σ−1
∗ Γ4,T (z)

+ (Γ1,2(z)Γ1,1(z) + σ∗λ
′E[Ψ(zI +BT,t)

−1Ψ2(zI +BT,t)
−1Ψ]λ)(1 + ξ(z; c))−1

−
(
(Γ1,1(z))

2 + σ∗λ
′E[Ψ(zI +BT,t)

−1Ψ(zI +BT,t)
−1Ψ]λ

)
(1 + ξ(z; c))−2κ2(z)

≈ z σ−1
∗ Γ4(z)

+ (Γ1,2(z)Γ1,1(z) + σ∗λ
′E[Ψ(zI +BT,t)

−1Ψ2(zI +BT,t)
−1Ψ]λ)(1 + ξ(z; c))−1

−
(
(Γ1,1(z))

2 + Γ4(z)
)
(1 + ξ(z; c))−2κ2(z)

145



(322)

Thus,

σ∗λ
′E[Ψ(zI +BT,t)

−1Ψ2(zI +BT,t)
−1Ψ]λ

≈ (Γ1,2(z)− z σ−1
∗ Γ4(z))(1 + ξ(z; c))− Γ1,2(z)Γ1,1(z) +

(
(Γ1,1(z))

2 + Γ4(z)
)
(1 + ξ(z; c))−1κ2(z)

(323)

Lemma 36 Let

κ2(z) = lim(T )−1σ∗ trE[Ψ
2(z +BT )

−1] . (324)

Then,

κ2(z) = c(ψ∗,1 − (σ∗c)
−1zξ(z; c))(1 + ξ(z; c)) . (325)

Proof of Lemma 36. We have

σ∗ψ∗,1 = P−1σ∗ tr(Ψ) ≈ P−1 trE[σ∗Ψ(zI +BT )(zI +BT )
−1]

= P−1z trE[σ∗Ψ(zI +BT )
−1] + P−1 trE[σ∗ΨBT (zI +BT )

−1]

≈ c−1zξ(z; c) + P−1 trE[σ∗Ψ(NT )−1
∑
t

FtF
′
t(zI +BT )

−1]

=︸︷︷︸
symmetry

c−1zξ(z; c) + P−1 trE[σ∗Ψ(N)−1FtF
′
t(zI +BT )

−1]

≈︸︷︷︸
(99) and Lemma 8

c−1zξ(z; c) + P−1 trE[σ∗Ψ(N)−1FtF
′
t(zI +BT,t)

−1](1 + ξ(z; c))−1

≈︸︷︷︸
Lemma 11

c−1zξ(z; c) + P−1 trE[σ2
∗Ψ

2(zI +BT,t)
−1](1 + ξ(z; c))−1 ,

(326)
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implying that

κ2(z) = c(ψ∗,1 − (σ∗c)
−1zξ(z; c))(1 + ξ(z; c)) . (327)

The proof of Lemma 36 is complete. □

Thus, by (320), we have

Term21 ≈ (1 + ξ(z; c))−2
(
Γ2
1,1(z)ψ2,λ + 2Γ1,1(z)σ∗Γ1,2(z)

+ (σ∗Γ1,2(z)− zΓ4(z))(1 + ξ(z; c))− Γ1,2(z)Γ1,1(z) +
(
(Γ1,1(z))

2 + Γ4(z)
)
(1 + ξ(z; c))−1κ2(z)

)
(328)

We now proceed to Term22 (332):

Term22

= −2N−1(1 + ξ(z; c))−3E[F ′
t1
(zI +BT,t1,t2)

−1(NT )−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

× ((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1,t2)
−1Ft2 ]

= −2N−1(1 + ξ(z; c))−3E[F ′
t1
(zI +BT,t1,t2)

−1(NT )−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

× ((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1,t2)
−1Ft2 ]

(329)
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By Lemma 11, we have

(NT )−1F ′
t2
(zI +BT,t1,t2)

−1

× ((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1,t2)
−1Ft2

≈ (T )−1σ∗ tr
(
Ψ(zI +BT,t1,t2)

−1σ2
∗Ψ

2(zI +BT,t1,t2)
−1
)

= (T )−1σ3
∗ tr
(
Ψ(zI +BT,t1,t2)

−1Ψ(zI +BT,t1,t2)
−1Ψ

)
≈ cσ2

∗(1 + ξ(z; c))
(
σ−1
∗ (1 + ξ(z; c))(ψ∗,1 − z(cσ∗)

−1ξ(z; c))

+ (1 + ξ(z; c))−1(ψ∗,1 − z(cσ∗)
−1ξ(z; c))cσ−1

∗ Γ3(z)− zσ−2
∗ Γ3(z)

)
= Γ5(z)

(330)

by Lemma 35, and the convergence is in L2. Then, since N
−1F ′

t1
(zI + BT,t1,t2)

−1(NT )−1Ft2

has a bounded L2−norm, we can proceed as follows

Term22

= −2N−1(1 + ξ(z; c))−3E[F ′
t1
(zI +BT,t1,t2)

−1(NT )−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

× ((ΨΣFΨ+ σ∗Ψ))2(zI +BT,t1,t2)
−1Ft2 ]

≈ −2N−1(1 + ξ(z; c))−3E[F ′
t1
(zI +BT,t1,t2)

−1(NT )−1Ft2 ]Γ5(z)

= −2(1 + ξ(z; c))−3E[λ′Ψ(zI +BT,t1,t2)
−1Ψλ]Γ5(z)

= −2(1 + ξ(z; c))−3Γ1,1(z)Γ5(z)

(331)

It remains to deal with Term23 (332):

Term23 = N−1(1 + ξ(z; c))−2E[F ′
t1
(1 + ξ(z; c))−1(zI +BT,t1,t2)

−1(NT )−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

× (ΨΣFΨ+ σ∗Ψ))2(1 + ξ(z; c))−1(zI +BT,t1,t2)
−1(NT )−1Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2 ]

(332)

which converges to zero by the same argument as in the proof of Lemma 28.
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O Virtue of Complexity

consider

ν(z∗) = q ψ∗,1 − z∗c
−1ξ(z∗; cq) (333)

where

ξ(z, cq) =
1− zm(−z; cq)

(cq)−1 − 1 + zm(−z; cq)
= −1 +

(cq)−1

(cq)−1 − 1 + zm(−z; cq)
. (334)

Theorem ?? implies

zm(−z) =
∫

zdH(x)

x(1− c+ czm) + z
,

and, hence,

m̃(−z; c) = (1− c)z−1 + cm(−z; c) , (335)

is the unique positive solution to

z =

∫
(1− (c− 1)m̃x) dH(x)

m̃(1 + m̃ x)
(336)

Furthermore,

ν(z∗) = qψ∗,1 − b−1
∗ ξ(c/b∗, cq) = c−1(cqψ∗,1 − z∗ξ(z∗; cq))

Thus, our goal is to show that

cψ∗,1 − zξ(z; c)
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is monotone increasing in c for any z > 0. We have

ξ = −1 +
z−1

(1− c)z−1 + cm
= −1 +

z−1

m̃

and

ξ′z = −z−2m̃− z−1m̃−2m̃′
z

and hence we need

f(c) = cψ∗,1 −
1

m̃

to be monotone, increasing in c. We know from (Kelly et al., 2021) that −1/m̃(c) is concave

in c. Thus,

Γ3(z; q) =
(−1 + z−1

m̃
) z

−1

m̃
+ z(−z−2m̃−1 − z−1m̃−2m̃′

z) + (−1 + z−1

m̃
)2( z

−1

m̃
)2

( z
−1

m̃
)2

=

(337)

P Risk-Return Tradeoff

Suppose we know the true data-generating process. The following will play a key role in our

analysis:

• Var[F ] = covariance matrix of factors

• E[F ] = vector of mean returns

• MaxSR2 = E[F ]′Var[FF ′]−1E[F ]. This is the maximal achievable Sharpe ratio.
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Then,

π = E[FF ′]−1E[F ] =︸︷︷︸
(99)

1

1 +MaxSR2
Var[F ]−1E[F ] (338)

has

E[π′Ft+1] = E[F ]′E[FF ′]−1E[F ] (339)

and

E[(π′Ft+1)
2] = E[F ]′E[FF ′]−1E[F ] . (340)

Suppose now that we rotate to principal components, and let θi = E[PCi] and µi = Var[PCi]

be the corresponding mean return and variance of the PCs, and we get

E[F ]′E[FF ′]−1E[F ] =
MaxSR2

1 +MaxSR2
(341)

where

MaxSR2 =
∑
i

θ2i
µi

=
∑
i

(SR(PCi))
2 . (342)

With ridge shrinkage, we get

E[Rinfeasible(z)] = E[F ]′(zI + E[FF ′])−1E[F ] =
Ξ(z)

1 + Ξ(z)
(343)

where

Ξ(z) = MaxSR(z)2 = E[F ]′(zI +Var[FF ′])−1E[F ] =
∑
i

θ2i
z + µi

(344)
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whereas

Var[(Rinfeasible(z))2] =
1

(1 + Ξ(z))2

∑
i

θ2i µi

(z + µi)2
(345)

Consider now the feasible one. It turns out that there exists an effective shrinkage function

Z∗(z; c) = z(1 + ξ(z; c)) > z that depends on the model complexity in a monotonic and

concave way, and such that Z∗(z; 0) = z so that, instead of (zI + E[FF ′])−1, all quantities

depend on (Z∗(z; c)I + E[FF ′])−1.

E[RF
t+1(z; q)] =

Ξ(Z∗(z))

1 + Ξ(Z∗(z))
(346)

Now comes the discussion of the second moment.

Background = E[(F ′
t1
(zI +BT )

−1Ft2)
2] (347)

BT =
1

T

∑
t

FtFt = Σ̂T + F̄T F̄
′
T (348)

where

F̄T =
1

T

∑
t

Ft (349)

and hence

(zI +BT )
−1F̄T = (zI + Σ̂T )

−1F̄T
1

1 +N−1F̄ ′
T (zI + Σ̂T )−1F̄T

(350)
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and

(zI + Σ̂T )
−1F̄T = (zI +BT )

−1F̄T
1

1−N−1F̄ ′
T (zI + Σ̂T )−1F̄T

(351)

Furthermore,

N−1/2E[λ′Ψ(zI + Σ̂T )
−1F̄T ] = E[λ′Ψ(zI + Σ̂T )

−1Ψλ] (352)

and

λ′Ψk+1λ = E[λ′Ψk(zI + Σ̂T )(zI + Σ̂T )
−1Ψλ]

= zE[λ′Ψk(zI + Σ̂T )
−1Ψλ] + E[λ′ΨkΣ̂T (zI + Σ̂T )

−1Ψλ]

= zE[λ′Ψk(zI + Σ̂T )
−1Ψλ] + N−1E[λ′ΨkFtF

′
t(zI + Σ̂T )

−1Ψλ]

=

(353)

Now, assuming Gaussian returns,

N−1E[F̄ ′
TAF̄T ]

= N−1 trE[AF̄T F̄
′
T ] = T−1 tr(AΨ)σ∗ + λ′ΨAΨλ .

(354)

At the same time,

N−2E[(F̄ ′
TAF̄T )

2]

= N−2T−4E[
∑

t1,t2,t3,t4

(F ′
t1
AFt2)(F

′
t3
AFt4)]

(355)

The terms where all ti are equal are negligible. The terms where only three out of four are
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identical give

N−2T−2E[(F ′
t1
AFt1)(F

′
t1
AFt2)]

≈ N−1T−1E[T−1 tr(AΨσ∗)(F
′
t1
AN1/2Ψλ)]

≈ T−1E[T−1 tr(AΨσ∗)(λΨ
′AΨλ)] → 0 .

(356)

The terms where all t1, t2, t3, t4 are different sum up to approximately

(λ′ΨAΨλ)2 (357)

Terms where exactly two are identical are for t1 = t2 or t1 = t3 or t1 = t4 or t2 = t3 or t2 = t4

or t3 = t4. for each combination there approximately T 3 of those and there six special cases

give

N−2T−1E[(F ′
t1
AFt1)(F

′
t3
AFt4)] ≈ T−1 tr(AΨ)σ∗λ

′ΨAΨλ (358)

and

N−2T−1E[(F ′
t1
AFt2)(F

′
t1
AFt4)] = T−1N−1E[(F ′

t1
AΨλ)(F ′

t1
AΨλ)]

= T−1N−1E[λ′ΨFt1F
′
t1
AΨλ]

≈ T−1E[λ′Ψσ∗ΨAΨλ] → 0

(359)

and the same for t1 = t4 and the same for t2 = t4 and finally for t3 = t4 we get

N−2T−1E[(F ′
t1
AFt2)(F

′
t3
AFt3)] ≈ T−1 tr(AΨ)σ∗λ

′ΨAΨλ (360)

It remains to deal with the case when two pairs of identical indices exist. If t1 = t2 and
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t3 = t4, we get approximately T 2 terms like that, giving

(T−1 tr(AΨ)σ∗)
2 (361)

If t1 = t3 and t2 = t4, there are roughly T 2 terms like this, giving

N−2T−2E[(F ′
t1
AFt2)

2] , (362)

which is negligible.

Q Proof of Theorem 5

We have Σλ = q θΨ/T , where we abouse the notation and use θ to denote ∥θ∥, . Then,

E[RF ] ≈ qθξ(−z; cq)
1 + ξ(z; cq)

(363)

and

E[(RF )2] ≈ (zξ(z; c))′(1− 2
qθξ(−z; cq)
1 + ξ(z; cq)

) + (zqθξ(−z; cq))′ (364)
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